
Linux® emulation in FreeBSD
Roman Divacky <rdivacky@FreeBSD.org>

Revision: e194334c79

Adobe, Acrobat, Acrobat Reader, Flash and PostScript are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States and/or other countries.

IBM, AIX, OS/2, PowerPC, PS/2, S/390, and ThinkPad are trademarks of International Business
Machines Corporation in the United States, other countries, or both.

FreeBSD is a registered trademark of the FreeBSD Foundation.

Linux is a registered trademark of Linus Torvalds.

NetBSD is a registered trademark of the NetBSD Foundation.

RealNetworks, RealPlayer, and RealAudio are the registered trademarks of RealNetworks, Inc.

Oracle is a registered trademark of Oracle Corporation.

Sun, Sun Microsystems, Java, Java Virtual Machine, JDK, JRE, JSP, JVM, Netra, OpenJDK, Solaris,
StarOffice, SunOS and VirtualBox are trademarks or registered trademarks of Sun Microsys-
tems, Inc. in the United States and other countries.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this document, and the FreeBSD
Project was aware of the trademark claim, the designations have been followed by the “™” or
the “®” symbol.

2021-01-08 14:04:42 +0100 by Daniel Ebdrup Jensen.

Abstract
This masters thesis deals with updating the Linux® emulation layer (the so called Linuxula-
tor). The task was to update the layer to match the functionality of Linux® 2.6. As a reference
implementation, the Linux® 2.6.16 kernel was chosen. The concept is loosely based on the
NetBSD implementation. Most of the work was done in the summer of 2006 as a part of the
Google Summer of Code students program. The focus was on bringing the NPTL (new POSIX®
thread library) support into the emulation layer, including TLS (thread local storage), futex-
es (fast user space mutexes), PID mangling, and some other minor things. Many small prob-
lems were identified and xed in the process. My work was integrated into the main FreeBSD
source repository and will be shipped in the upcoming 7.0R release. We, the emulation devel-
opment team, are working on making the Linux® 2.6 emulation the default emulation layer in
FreeBSD.

Table of Contents
1. Introduction . 2
2. A look inside… . 2
3. Emulation . 8
4. Linux® emulation layer -MD part . 12
5. Linux® emulation layer -MI part . 15
6. Conclusion . 23
7. Literatures . 24

mailto:rdivacky@FreeBSD.org
https://cgit.freebsd.org/doc/commit/?id=e194334c79

Introduction

1. Introduction
In the last few years the open source UNIX® based operating systems started to be widely deployed on server and
client machines. Among these operating systems I would like to point out two: FreeBSD, for its BSD heritage, time
proven code base and many interesting features and Linux® for its wide user base, enthusiastic open developer
community and support from large companies. FreeBSD tends to be used on server class machines serving heavy
duty networking tasks with less usage on desktop class machines for ordinary users. While Linux® has the same
usage on servers, but it is used much more by home based users. This leads to a situation where there are many
binary only programs available for Linux® that lack support for FreeBSD.

Naturally, a need for the ability to run Linux® binaries on a FreeBSD system arises and this is what this thesis deals
with: the emulation of the Linux® kernel in the FreeBSD operating system.

During the Summer of 2006 Google Inc. sponsored a project which focused on extending the Linux® emulation
layer (the so called Linuxulator) in FreeBSD to include Linux® 2.6 facilities. This thesis is written as a part of this
project.

2. A look inside…
In this section we are going to describe every operating system in question. How they deal with syscalls, trapframes
etc., all the low-level stu. We also describe the way they understand common UNIX® primitives like what a PID
is, what a thread is, etc. In the third subsection we talk about how UNIX® on UNIX® emulation could be done in
general.

2.1. What is UNIX®

UNIX® is an operating system with a long history that has influenced almost every other operating system cur-
rently in use. Starting in the 1960s, its development continues to this day (although in different projects). UNIX®
development soon forked into two main ways: the BSDs and System III/V families. They mutually influenced them-
selves by growing a common UNIX® standard. Among the contributions originated in BSD we can name virtual
memory, TCP/IP networking, FFS, and many others. The System V branch contributed to SysV interprocess com-
munication primitives, copy-on-write, etc. UNIX® itself does not exist any more but its ideas have been used by
many other operating systems world wide thus forming the so called UNIX®-like operating systems. These days
the most influential ones are Linux®, Solaris, and possibly (to some extent) FreeBSD. There are in-company UNIX®
derivatives (AIX, HP-UX etc.), but these have been more and more migrated to the aforementioned systems. Let
us summarize typical UNIX® characteristics.

2.2. Technical details

Every running program constitutes a process that represents a state of the computation. Running process is divided
between kernel-space and user-space. Some operations can be done only from kernel space (dealing with hardware
etc.), but the process should spend most of its lifetime in the user space. The kernel is where the management of
the processes, hardware, and low-level details take place. The kernel provides a standard unified UNIX® API to the
user space. The most important ones are covered below.

2.2.1. Communication between kernel and user space process

Common UNIX® API defines a syscall as a way to issue commands from a user space process to the kernel. The most
common implementation is either by using an interrupt or specialized instruction (think of SYSENTER/SYSCALL
instructions for ia32). Syscalls are defined by a number. For example in FreeBSD, the syscall number 85 is the
swapon(2) syscall and the syscall number 132 is mkfifo(2). Some syscalls need parameters, which are passed from
the user-space to the kernel-space in various ways (implementation dependant). Syscalls are synchronous.

Another possible way to communicate is by using a trap. Traps occur asynchronously after some event occurs
(division by zero, page fault etc.). A trap can be transparent for a process (page fault) or can result in a reaction
like sending a signal (division by zero).

2

https://www.FreeBSD.org/cgi/man.cgi?query=swapon&sektion=2&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=mkfifo&sektion=2&manpath=freebsd-release-ports

Linux® emulation in FreeBSD

2.2.2. Communication between processes

There are other APIs (System V IPC, shared memory etc.) but the single most important API is signal. Signals are
sent by processes or by the kernel and received by processes. Some signals can be ignored or handled by a user
supplied routine, some result in a predefined action that cannot be altered or ignored.

2.2.3. Process management

Kernel instances are processed rst in the system (so called init). Every running process can create its identical copy
using the fork(2) syscall. Some slightly modified versions of this syscall were introduced but the basic semantic is
the same. Every running process can morph into some other process using the exec(3) syscall. Some modifications
of this syscall were introduced but all serve the same basic purpose. Processes end their lives by calling the exit(2)
syscall. Every process is identified by a unique number called PID. Every process has a defined parent (identified
by its PID).

2.2.4. Thread management

Traditional UNIX® does not define any API nor implementation for threading, while POSIX® defines its threading
API but the implementation is undefined. Traditionally there were two ways of implementing threads. Handling
them as separate processes (1:1 threading) or envelope the whole thread group in one process and managing the
threading in userspace (1:N threading). Comparing main features of each approach:

1:1 threading

• - heavyweight threads

• - the scheduling cannot be altered by the user (slightly mitigated by the POSIX® API)

• + no syscall wrapping necessary

• + can utilize multiple CPUs

1:N threading

• + lightweight threads

• + scheduling can be easily altered by the user

• - syscalls must be wrapped

• - cannot utilize more than one CPU

2.3. What is FreeBSD?

The FreeBSD project is one of the oldest open source operating systems currently available for daily use. It is a
direct descendant of the genuine UNIX® so it could be claimed that it is a true UNIX® although licensing issues
do not permit that. The start of the project dates back to the early 1990's when a crew of fellow BSD users patched
the 386BSD operating system. Based on this patchkit a new operating system arose named FreeBSD for its liberal
license. Another group created the NetBSD operating system with different goals in mind. We will focus on FreeBSD.

FreeBSD is a modern UNIX®-based operating system with all the features of UNIX®. Preemptive multitasking,
multiuser facilities, TCP/IP networking, memory protection, symmetric multiprocessing support, virtual memory
with merged VM and buer cache, they are all there. One of the interesting and extremely useful features is the
ability to emulate other UNIX®-like operating systems. As of December 2006 and 7-CURRENT development, the
following emulation functionalities are supported:

• FreeBSD/i386 emulation on FreeBSD/amd64

• FreeBSD/i386 emulation on FreeBSD/ia64

• Linux®-emulation of Linux® operating system on FreeBSD

3

https://www.FreeBSD.org/cgi/man.cgi?query=fork&sektion=2&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=exec&sektion=3&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=exit&sektion=2&manpath=freebsd-release-ports

What is FreeBSD?

• NDIS-emulation of Windows networking drivers interface

• NetBSD-emulation of NetBSD operating system

• PECo-support for PECo FreeBSD executables

• SVR4-emulation of System V revision 4 UNIX®

Actively developed emulations are the Linux® layer and various FreeBSD-on-FreeBSD layers. Others are not sup-
posed to work properly nor be usable these days.

2.3.1. Technical details

FreeBSD is traditional flavor of UNIX® in the sense of dividing the run of processes into two halves: kernel space
and user space run. There are two types of process entry to the kernel: a syscall and a trap. There is only one way
to return. In the subsequent sections we will describe the three gates to/from the kernel. The whole description
applies to the i386 architecture as the Linuxulator only exists there but the concept is similar on other architec-
tures. The information was taken from [1] and the source code.

2.3.1.1. System entries

FreeBSD has an abstraction called an execution class loader, which is a wedge into the execve(2) syscall. This em-
ploys a structure sysentvec, which describes an executable ABI. It contains things like errno translation table,
signal translation table, various functions to serve syscall needs (stack fixup, coredumping, etc.). Every ABI the
FreeBSD kernel wants to support must define this structure, as it is used later in the syscall processing code and at
some other places. System entries are handled by trap handlers, where we can access both the kernel-space and
the user-space at once.

2.3.1.2. Syscalls

Syscalls on FreeBSD are issued by executing interrupt 0x80 with register %eax set to a desired syscall number with
arguments passed on the stack.

When a process issues an interrupt 0x80, the int0x80 syscall trap handler is issued (defined in sys/i386/i386/
exception.s), which prepares arguments (i.e. copies them on to the stack) for a call to a C function syscall(2) (de-
fined in sys/i386/i386/trap.c), which processes the passed in trapframe. The processing consists of preparing
the syscall (depending on the sysvec entry), determining if the syscall is 32-bit or 64-bit one (changes size of the
parameters), then the parameters are copied, including the syscall. Next, the actual syscall function is executed
with processing of the return code (special cases for ERESTART and EJUSTRETURN errors). Finally an userret() is
scheduled, switching the process back to the users-pace. The parameters to the actual syscall handler are passed
in the form of struct thread *td , struct syscall args * arguments where the second parameter is a pointer
to the copied in structure of parameters.

2.3.1.3. Traps

Handling of traps in FreeBSD is similar to the handling of syscalls. Whenever a trap occurs, an assembler handler
is called. It is chosen between alltraps, alltraps with regs pushed or calltrap depending on the type of the trap.
This handler prepares arguments for a call to a C function trap() (defined in sys/i386/i386/trap.c), which
then processes the occurred trap. After the processing it might send a signal to the process and/or exit to userland
using userret().

2.3.1.4. Exits

Exits from kernel to userspace happen using the assembler routine doreti regardless of whether the kernel was
entered via a trap or via a syscall. This restores the program status from the stack and returns to the userspace.

2.3.1.5. UNIX® primitives

FreeBSD operating system adheres to the traditional UNIX® scheme, where every process has a unique identifica-
tion number, the so called PID (Process ID). PID numbers are allocated either linearly or randomly ranging from 0

4

https://www.FreeBSD.org/cgi/man.cgi?query=execve&sektion=2&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=syscall&sektion=2&manpath=freebsd-release-ports

Linux® emulation in FreeBSD

to PID_MAX . The allocation of PID numbers is done using linear searching of PID space. Every thread in a process
receives the same PID number as result of the getpid(2) call.

There are currently two ways to implement threading in FreeBSD. The rst way is M:N threading followed by the
1:1 threading model. The default library used is M:N threading (libpthread) and you can switch at runtime to 1:1
threading (libthr). The plan is to switch to 1:1 library by default soon. Although those two libraries use the same
kernel primitives, they are accessed through different API(es). The M:N library uses the kse_* family of syscalls
while the 1:1 library uses the thr_* family of syscalls. Due to this, there is no general concept of thread ID shared
between kernel and userspace. Of course, both threading libraries implement the pthread thread ID API. Every
kernel thread (as described by struct thread) has td tid identifier but this is not directly accessible from userland
and solely serves the kernel's needs. It is also used for 1:1 threading library as pthread's thread ID but handling of
this is internal to the library and cannot be relied on.

As stated previously there are two implementations of threading in FreeBSD. The M:N library divides the work
between kernel space and userspace. Thread is an entity that gets scheduled in the kernel but it can represent
various number of userspace threads. M userspace threads get mapped to N kernel threads thus saving resources
while keeping the ability to exploit multiprocessor parallelism. Further information about the implementation
can be obtained from the man page or [1]. The 1:1 library directly maps a userland thread to a kernel thread thus
greatly simplifying the scheme. None of these designs implement a fairness mechanism (such a mechanism was
implemented but it was removed recently because it caused serious slowdown and made the code more difficult
to deal with).

2.4. What is Linux®

Linux® is a UNIX®-like kernel originally developed by Linus Torvalds, and now being contributed to by a massive
crowd of programmers all around the world. From its mere beginnings to today, with wide support from compa-
nies such as IBM or Google, Linux® is being associated with its fast development pace, full hardware support and
benevolent dictator model of organization.

Linux® development started in 1991 as a hobbyist project at University of Helsinki in Finland. Since then it has
obtained all the features of a modern UNIX®-like OS: multiprocessing, multiuser support, virtual memory, net-
working, basically everything is there. There are also highly advanced features like virtualization etc.

As of 2006 Linux® seems to be the most widely used open source operating system with support from independent
software vendors like Oracle, RealNetworks, Adobe, etc. Most of the commercial software distributed for Linux®
can only be obtained in a binary form so recompilation for other operating systems is impossible.

Most of the Linux® development happens in a Git version control system. Git is a distributed system so there
is no central source of the Linux® code, but some branches are considered prominent and official. The version
number scheme implemented by Linux® consists of four numbers A.B.C.D. Currently development happens in
2.6.C.D, where C represents major version, where new features are added or changed while D is a minor version
for bugfixes only.

More information can be obtained from [3].

2.4.1. Technical details

Linux® follows the traditional UNIX® scheme of dividing the run of a process in two halves: the kernel and user
space. The kernel can be entered in two ways: via a trap or via a syscall. The return is handled only in one way. The
further description applies to Linux® 2.6 on the i386™ architecture. This information was taken from [2].

2.4.1.1. Syscalls

Syscalls in Linux® are performed (in userspace) using syscallX macros where X substitutes a number representing
the number of parameters of the given syscall. This macro translates to a code that loads %eax register with a
number of the syscall and executes interrupt 0x80. After this syscall return is called, which translates negative
return values to positive errno values and sets res to -1 in case of an error. Whenever the interrupt 0x80 is called
the process enters the kernel in system call trap handler. This routine saves all registers on the stack and calls the

5

https://www.FreeBSD.org/cgi/man.cgi?query=getpid&sektion=2&manpath=freebsd-release-ports

What is Linux®

selected syscall entry. Note that the Linux® calling convention expects parameters to the syscall to be passed via
registers as shown here:

1. parameter -> %ebx

2. parameter -> %ecx

3. parameter -> %edx

4. parameter -> %esi

5. parameter -> %edi

6. parameter -> %ebp

There are some exceptions to this, where Linux® uses different calling convention (most notably the clone
syscall).

2.4.1.2. Traps

The trap handlers are introduced in arch/i386/kernel/traps.c and most of these handlers live in arch/i386/
kernel/entry.S, where handling of the traps happens.

2.4.1.3. Exits

Return from the syscall is managed by syscall exit(3), which checks for the process having unfinished work, then
checks whether we used user-supplied selectors. If this happens stack fixing is applied and finally the registers are
restored from the stack and the process returns to the userspace.

2.4.1.4. UNIX® primitives

In the 2.6 version, the Linux® operating system redefined some of the traditional UNIX® primitives, notably PID,
TID and thread. PID is defined not to be unique for every process, so for some processes (threads) getppid(2) returns
the same value. Unique identification of process is provided by TID. This is because NPTL (New POSIX® Thread
Library) defines threads to be normal processes (so called 1:1 threading). Spawning a new process in Linux® 2.6
happens using the clone syscall (fork variants are reimplemented using it). This clone syscall defines a set of ags
that affect behavior of the cloning process regarding thread implementation. The semantic is a bit fuzzy as there
is no single ag telling the syscall to create a thread.

Implemented clone ags are:

• CLONE_VM - processes share their memory space

• CLONE_FS - share umask, cwd and namespace

• CLONE_FILES - share open les

• CLONE_SIGHAND - share signal handlers and blocked signals

• CLONE_PARENT - share parent

• CLONE_THREAD - be thread (further explanation below)

• CLONE_NEWNS - new namespace

• CLONE_SYSVSEM - share SysV undo structures

• CLONE_SETTLS - setup TLS at supplied address

• CLONE_PARENT_SETTID - set TID in the parent

• CLONE_CHILD_CLEARTID - clear TID in the child

6

https://www.FreeBSD.org/cgi/man.cgi?query=exit&sektion=3&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=getppid&sektion=2&manpath=freebsd-release-ports

Linux® emulation in FreeBSD

• CLONE_CHILD_SETTID - set TID in the child

CLONE_PARENT sets the real parent to the parent of the caller. This is useful for threads because if thread A creates
thread B we want thread B to be parented to the parent of the whole thread group. CLONE_THREAD does exactly
the same thing as CLONE_PARENT, CLONE_VM and CLONE_SIGHAND, rewrites PID to be the same as PID of the caller,
sets exit signal to be none and enters the thread group. CLONE_SETTLS sets up GDT entries for TLS handling. The
CLONE_*_*TID set of ags sets/clears user supplied address to TID or 0.

As you can see the CLONE_THREAD does most of the work and does not seem to t the scheme very well. The original
intention is unclear (even for authors, according to comments in the code) but I think originally there was one
threading ag, which was then parcelled among many other ags but this separation was never fully finished. It is
also unclear what this partition is good for as glibc does not use that so only hand-written use of the clone permits
a programmer to access this features.

For non-threaded programs the PID and TID are the same. For threaded programs the rst thread PID and TID are
the same and every created thread shares the same PID and gets assigned a unique TID (because CLONE_THREAD is
passed in) also parent is shared for all processes forming this threaded program.

The code that implements pthread_create(3) in NPTL defines the clone ags like this:

int clone_flags = (CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGNAL

 | CLONE_SETTLS | CLONE_PARENT_SETTID

| CLONE_CHILD_CLEARTID | CLONE_SYSVSEM
#if __ASSUME_NO_CLONE_DETACHED == 0

| CLONE_DETACHED
#endif

| 0);

The CLONE_SIGNAL is defined like

#define CLONE_SIGNAL (CLONE_SIGHAND | CLONE_THREAD)

the last 0 means no signal is sent when any of the threads exits.

2.5. What is emulation

According to a dictionary definition, emulation is the ability of a program or device to imitate another program or
device. This is achieved by providing the same reaction to a given stimulus as the emulated object. In practice, the
software world mostly sees three types of emulation - a program used to emulate a machine (QEMU, various game
console emulators etc.), software emulation of a hardware facility (OpenGL emulators, floating point units emula-
tion etc.) and operating system emulation (either in kernel of the operating system or as a userspace program).

Emulation is usually used in a place, where using the original component is not feasible nor possible at all. For
example someone might want to use a program developed for a different operating system than they use. Then
emulation comes in handy. Sometimes there is no other way but to use emulation - e.g. when the hardware device
you try to use does not exist (yet/anymore) then there is no other way but emulation. This happens often when
porting an operating system to a new (non-existent) platform. Sometimes it is just cheaper to emulate.

Looking from an implementation point of view, there are two main approaches to the implementation of emula-
tion. You can either emulate the whole thing - accepting possible inputs of the original object, maintaining inner
state and emitting correct output based on the state and/or input. This kind of emulation does not require any
special conditions and basically can be implemented anywhere for any device/program. The drawback is that im-
plementing such emulation is quite difficult, time-consuming and error-prone. In some cases we can use a simpler
approach. Imagine you want to emulate a printer that prints from left to right on a printer that prints from right
to left. It is obvious that there is no need for a complex emulation layer but simply reversing of the printed text is
sufficient. Sometimes the emulating environment is very similar to the emulated one so just a thin layer of some

7

https://www.FreeBSD.org/cgi/man.cgi?query=pthread_create&sektion=3&manpath=freebsd-release-ports

Emulation

translation is necessary to provide fully working emulation! As you can see this is much less demanding to imple-
ment, so less time-consuming and error-prone than the previous approach. But the necessary condition is that the
two environments must be similar enough. The third approach combines the two previous. Most of the time the
objects do not provide the same capabilities so in a case of emulating the more powerful one on the less powerful
we have to emulate the missing features with full emulation described above.

This master thesis deals with emulation of UNIX® on UNIX®, which is exactly the case, where only a thin layer
of translation is sufficient to provide full emulation. The UNIX® API consists of a set of syscalls, which are usually
self contained and do not affect some global kernel state.

There are a few syscalls that affect inner state but this can be dealt with by providing some structures that maintain
the extra state.

No emulation is perfect and emulations tend to lack some parts but this usually does not cause any serious draw-
backs. Imagine a game console emulator that emulates everything but music output. No doubt that the games are
playable and one can use the emulator. It might not be that comfortable as the original game console but its an
acceptable compromise between price and comfort.

The same goes with the UNIX® API. Most programs can live with a very limited set of syscalls working. Those
syscalls tend to be the oldest ones (read(2)/write(2), fork(2) family, signal(3) handling, exit(3), socket(2) API) hence
it is easy to emulate because their semantics is shared among all UNIX®es, which exist todays.

3. Emulation
3.1. How emulation works in FreeBSD

As stated earlier, FreeBSD supports running binaries from several other UNIX®es. This works because FreeBSD has
an abstraction called the execution class loader. This wedges into the execve(2) syscall, so when execve(2) is about
to execute a binary it examines its type.

There are basically two types of binaries in FreeBSD. Shell-like text scripts which are identified by #! as their rst
two characters and normal (typically ELF) binaries, which are a representation of a compiled executable object. The
vast majority (one could say all of them) of binaries in FreeBSD are from type ELF. ELF les contain a header, which
specifies the OS ABI for this ELF le. By reading this information, the operating system can accurately determine
what type of binary the given le is.

Every OS ABI must be registered in the FreeBSD kernel. This applies to the FreeBSD native OS ABI, as well. So when
execve(2) executes a binary it iterates through the list of registered APIs and when it nds the right one it starts
to use the information contained in the OS ABI description (its syscall table, errno translation table, etc.). So every
time the process calls a syscall, it uses its own set of syscalls instead of some global one. This effectively provides
a very elegant and easy way of supporting execution of various binary formats.

The nature of emulation of different OSes (and also some other subsystems) led developers to invite a handler
event mechanism. There are various places in the kernel, where a list of event handlers are called. Every subsystem
can register an event handler and they are called accordingly. For example, when a process exits there is a handler
called that possibly cleans up whatever the subsystem needs to be cleaned.

Those simple facilities provide basically everything that is needed for the emulation infrastructure and in fact
these are basically the only things necessary to implement the Linux® emulation layer.

3.2. Common primitives in the FreeBSD kernel

Emulation layers need some support from the operating system. I am going to describe some of the supported
primitives in the FreeBSD operating system.

3.2.1. Locking primitives

Contributed by: Attilio Rao <attilio@FreeBSD.org>

8

https://www.FreeBSD.org/cgi/man.cgi?query=read&sektion=2&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=write&sektion=2&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=fork&sektion=2&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=signal&sektion=3&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=exit&sektion=3&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=socket&sektion=2&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=execve&sektion=2&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=execve&sektion=2&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=execve&sektion=2&manpath=freebsd-release-ports
mailto:attilio@FreeBSD.org

Linux® emulation in FreeBSD

The FreeBSD synchronization primitive set is based on the idea to supply a rather huge number of different prim-
itives in a way that the better one can be used for every particular, appropriate situation.

To a high level point of view you can consider three kinds of synchronization primitives in the FreeBSD kernel:

• atomic operations and memory barriers

• locks

• scheduling barriers

Below there are descriptions for the 3 families. For every lock, you should really check the linked manpage (where
possible) for more detailed explanations.

3.2.1.1. Atomic operations and memory barriers

Atomic operations are implemented through a set of functions performing simple arithmetics on memory
operands in an atomic way with respect to external events (interrupts, preemption, etc.). Atomic operations can
guarantee atomicity just on small data types (in the magnitude order of the .long. architecture C data type),
so should be rarely used directly in the end-level code, if not only for very simple operations (like ag setting in
a bitmap, for example). In fact, it is rather simple and common to write down a wrong semantic based on just
atomic operations (usually referred as lock-less). The FreeBSD kernel offers a way to perform atomic operations
in conjunction with a memory barrier. The memory barriers will guarantee that an atomic operation will happen
following some specified ordering with respect to other memory accesses. For example, if we need that an atomic
operation happen just after all other pending writes (in terms of instructions reordering buers activities) are
completed, we need to explicitly use a memory barrier in conjunction to this atomic operation. So it is simple to
understand why memory barriers play a key role for higher-level locks building (just as refcounts, mutexes, etc.).
For a detailed explanatory on atomic operations, please refer to atomic(9). It is far, however, noting that atomic
operations (and memory barriers as well) should ideally only be used for building front-ending locks (as mutexes).

3.2.1.2. Refcounts

Refcounts are interfaces for handling reference counters. They are implemented through atomic operations and
are intended to be used just for cases, where the reference counter is the only one thing to be protected, so even
something like a spin-mutex is deprecated. Using the refcount interface for structures, where a mutex is already
used is often wrong since we should probably close the reference counter in some already protected paths. A
manpage discussing refcount does not exist currently, just check sys/refcount.h for an overview of the existing
API.

3.2.1.3. Locks

FreeBSD kernel has huge classes of locks. Every lock is defined by some peculiar properties, but probably the most
important is the event linked to contesting holders (or in other terms, the behavior of threads unable to acquire
the lock). FreeBSD's locking scheme presents three different behaviors for contenders:

1. spinning

2. blocking

3. sleeping

Note
numbers are not casual

9

https://www.FreeBSD.org/cgi/man.cgi?query=atomic&sektion=9&manpath=freebsd-release-ports

Common primitives in the FreeBSD kernel

3.2.1.4. Spinning locks

Spin locks let waiters to spin until they cannot acquire the lock. An important matter do deal with is when a thread
contests on a spin lock if it is not descheduled. Since the FreeBSD kernel is preemptive, this exposes spin lock at the
risk of deadlocks that can be solved just disabling interrupts while they are acquired. For this and other reasons
(like lack of priority propagation support, poorness in load balancing schemes between CPUs, etc.), spin locks are
intended to protect very small paths of code, or ideally not to be used at all if not explicitly requested (explained
later).

3.2.1.5. Blocking

Block locks let waiters to be descheduled and blocked until the lock owner does not drop it and wakes up one or
more contenders. In order to avoid starvation issues, blocking locks do priority propagation from the waiters to
the owner. Block locks must be implemented through the turnstile interface and are intended to be the most used
kind of locks in the kernel, if no particular conditions are met.

3.2.1.6. Sleeping

Sleep locks let waiters to be descheduled and fall asleep until the lock holder does not drop it and wakes up one or
more waiters. Since sleep locks are intended to protect large paths of code and to cater asynchronous events, they
do not do any form of priority propagation. They must be implemented through the sleepqueue(9) interface.

The order used to acquire locks is very important, not only for the possibility to deadlock due at lock order reversals,
but even because lock acquisition should follow specific rules linked to locks natures. If you give a look at the table
above, the practical rule is that if a thread holds a lock of level n (where the level is the number listed close to the
kind of lock) it is not allowed to acquire a lock of superior levels, since this would break the specified semantic
for a path. For example, if a thread holds a block lock (level 2), it is allowed to acquire a spin lock (level 1) but not
a sleep lock (level 3), since block locks are intended to protect smaller paths than sleep lock (these rules are not
about atomic operations or scheduling barriers, however).

This is a list of lock with their respective behaviors:

• spin mutex - spinning - mutex(9)

• sleep mutex - blocking - mutex(9)

• pool mutex - blocking - mtx_pool(9)

• sleep family - sleeping - sleep(9) pause tsleep msleep msleep spin msleep rw msleep sx

• condvar - sleeping - condvar(9)

• rwlock - blocking - rwlock(9)

• sxlock - sleeping - sx(9)

• lockmgr - sleeping - lockmgr(9)

• semaphores - sleeping - sema(9)

Among these locks only mutexes, sxlocks, rwlocks and lockmgrs are intended to handle recursion, but currently
recursion is only supported by mutexes and lockmgrs.

3.2.1.7. Scheduling barriers

Scheduling barriers are intended to be used in order to drive scheduling of threading. They consist mainly of three
different stubs:

• critical sections (and preemption)

10

https://www.FreeBSD.org/cgi/man.cgi?query=sleepqueue&sektion=9&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=mutex&sektion=9&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=mutex&sektion=9&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=mtx_pool&sektion=9&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=sleep&sektion=9&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=condvar&sektion=9&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=rwlock&sektion=9&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=sx&sektion=9&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=lockmgr&sektion=9&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=sema&sektion=9&manpath=freebsd-release-ports

Linux® emulation in FreeBSD

• sched_bind

• sched_pin

Generally, these should be used only in a particular context and even if they can often replace locks, they should
be avoided because they do not let the diagnose of simple eventual problems with locking debugging tools (as
witness(4)).

3.2.1.8. Critical sections

The FreeBSD kernel has been made preemptive basically to deal with interrupt threads. In fact, in order to avoid
high interrupt latency, time-sharing priority threads can be preempted by interrupt threads (in this way, they
do not need to wait to be scheduled as the normal path previews). Preemption, however, introduces new racing
points that need to be handled, as well. Often, in order to deal with preemption, the simplest thing to do is to
completely disable it. A critical section defines a piece of code (borderlined by the pair of functions critical_enter(9)
and critical_exit(9), where preemption is guaranteed to not happen (until the protected code is fully executed).
This can often replace a lock effectively but should be used carefully in order to not lose the whole advantage that
preemption brings.

3.2.1.9. sched_pin/sched_unpin

Another way to deal with preemption is the sched_pin() interface. If a piece of code is closed in the sched_pin()
and sched_unpin() pair of functions it is guaranteed that the respective thread, even if it can be preempted, it will
always be executed on the same CPU. Pinning is very effective in the particular case when we have to access at per-
cpu datas and we assume other threads will not change those data. The latter condition will determine a critical
section as a too strong condition for our code.

3.2.1.10. sched_bind/sched_unbind

sched_bind is an API used in order to bind a thread to a particular CPU for all the time it executes the code, until
a sched_unbind function call does not unbind it. This feature has a key role in situations where you cannot trust
the current state of CPUs (for example, at very early stages of boot), as you want to avoid your thread to migrate
on inactive CPUs. Since sched_bind and sched_unbind manipulate internal scheduler structures, they need to be
enclosed in sched_lock acquisition/releasing when used.

3.2.2. Proc structure

Various emulation layers sometimes require some additional per-process data. It can manage separate structures
(a list, a tree etc.) containing these data for every process but this tends to be slow and memory consuming. To
solve this problem the FreeBSD proc structure contains p_emuldata, which is a void pointer to some emulation
layer specific data. This proc entry is protected by the proc mutex.

The FreeBSD proc structure contains a p_sysent entry that identifies, which ABI this process is running. In fact,
it is a pointer to the sysentvec described above. So by comparing this pointer to the address where the sysentvec
structure for the given ABI is stored we can effectively determine whether the process belongs to our emulation
layer. The code typically looks like:

if (__predict_true(p->p_sysent != &elf_Linux®_sysvec))
 return;

As you can see, we effectively use the __predict_true modifier to collapse the most common case (FreeBSD
process) to a simple return operation thus preserving high performance. This code should be turned into a macro
because currently it is not very flexible, i.e. we do not support Linux®64 emulation nor A.OUT Linux® processes
on i386.

3.2.3. VFS

The FreeBSD VFS subsystem is very complex but the Linux® emulation layer uses just a small subset via a well
defined API. It can either operate on vnodes or le handlers. Vnode represents a virtual vnode, i.e. representation

11

https://www.FreeBSD.org/cgi/man.cgi?query=witness&sektion=4&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=critical_enter&sektion=9&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=critical_exit&sektion=9&manpath=freebsd-release-ports

Linux® emulation layer -MD part

of a node in VFS. Another representation is a le handler, which represents an opened le from the perspective of
a process. A le handler can represent a socket or an ordinary le. A le handler contains a pointer to its vnode.
More then one le handler can point to the same vnode.

3.2.3.1. namei

The namei(9) routine is a central entry point to pathname lookup and translation. It traverses the path point by
point from the starting point to the end point using lookup function, which is internal to VFS. The namei(9) syscall
can cope with symlinks, absolute and relative paths. When a path is looked up using namei(9) it is inputed to the
name cache. This behavior can be suppressed. This routine is used all over the kernel and its performance is very
critical.

3.2.3.2. vn_fullpath

The vn_fullpath(9) function takes the best effort to traverse VFS name cache and returns a path for a given (locked)
vnode. This process is unreliable but works just ne for the most common cases. The unreliability is because it
relies on VFS cache (it does not traverse the on medium structures), it does not work with hardlinks, etc. This
routine is used in several places in the Linuxulator.

3.2.3.3. Vnode operations

• fgetvp - given a thread and a le descriptor number it returns the associated vnode

• vn_lock(9) - locks a vnode

• vn_unlock - unlocks a vnode

• VOP_READDIR(9) - reads a directory referenced by a vnode

• VOP_GETATTR(9) - gets attributes of a le or a directory referenced by a vnode

• VOP_LOOKUP(9) - looks up a path to a given directory

• VOP_OPEN(9) - opens a le referenced by a vnode

• VOP_CLOSE(9) - closes a le referenced by a vnode

• vput(9) - decrements the use count for a vnode and unlocks it

• vrele(9) - decrements the use count for a vnode

• vref(9) - increments the use count for a vnode

3.2.3.4. File handler operations

• fget - given a thread and a le descriptor number it returns associated le handler and references it

• fdrop - drops a reference to a le handler

• fhold - references a le handler

4. Linux® emulation layer -MD part
This section deals with implementation of Linux® emulation layer in FreeBSD operating system. It rst describes
the machine dependent part talking about how and where interaction between userland and kernel is implement-
ed. It talks about syscalls, signals, ptrace, traps, stack fixup. This part discusses i386 but it is written generally so
other architectures should not differ very much. The next part is the machine independent part of the Linuxulator.
This section only covers i386 and ELF handling. A.OUT is obsolete and untested.

12

https://www.FreeBSD.org/cgi/man.cgi?query=namei&sektion=9&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=namei&sektion=9&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=namei&sektion=9&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=vn_fullpath&sektion=9&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=vn_lock&sektion=9&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=VOP_READDIR&sektion=9&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=VOP_GETATTR&sektion=9&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=VOP_LOOKUP&sektion=9&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=VOP_OPEN&sektion=9&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=VOP_CLOSE&sektion=9&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=vput&sektion=9&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=vrele&sektion=9&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=vref&sektion=9&manpath=freebsd-release-ports

Linux® emulation in FreeBSD

4.1. Syscall handling

Syscall handling is mostly written in linux_sysvec.c, which covers most of the routines pointed out in the sy-
sentvec structure. When a Linux® process running on FreeBSD issues a syscall, the general syscall routine calls
linux prepsyscall routine for the Linux® ABI.

4.1.1. Linux® prepsyscall

Linux® passes arguments to syscalls via registers (that is why it is limited to 6 parameters on i386) while FreeBSD
uses the stack. The Linux® prepsyscall routine must copy parameters from registers to the stack. The order of the
registers is: %ebx, %ecx, %edx, %esi, %edi, %ebp. The catch is that this is true for only most of the syscalls. Some
(most notably clone) uses a different order but it is luckily easy to x by inserting a dummy parameter in the
linux_clone prototype.

4.1.2. Syscall writing

Every syscall implemented in the Linuxulator must have its prototype with various ags in syscalls.master. The
form of the le is:

...
 AUE_FORK STD { int linux_fork(void); }
...
 AUE_CLOSE NOPROTO { int close(int fd); }
...

The rst column represents the syscall number. The second column is for auditing support. The third column rep-
resents the syscall type. It is either STD, OBSOL , NOPROTO and UNIMPL. STD is a standard syscall with full prototype
and implementation. OBSOL is obsolete and defines just the prototype. NOPROTO means that the syscall is imple-
mented elsewhere so do not prepend ABI prefix, etc. UNIMPL means that the syscall will be substituted with the
nosys syscall (a syscall just printing out a message about the syscall not being implemented and returning ENOSYS).

From syscalls.master a script generates three les: linux_syscall.h, linux_proto.h and linux_sysent.c. The
linux_syscall.h contains definitions of syscall names and their numerical value, e.g.:

...
#define LINUX_SYS_linux_fork 2
...
#define LINUX_SYS_close 6
...

The linux_proto.h contains structure definitions of arguments to every syscall, e.g.:

struct linux_fork_args {
 register_t dummy;
};

And finally, linux_sysent.c contains structure describing the system entry table, used to actually dispatch a
syscall, e.g.:

{ 0, (sy_call_t *)linux_fork, AUE_FORK, NULL, 0, 0 }, /* 2 = linux_fork */
{ AS(close_args), (sy_call_t *)close, AUE_CLOSE, NULL, 0, 0 }, /* 6 = close */

As you can see linux_fork is implemented in Linuxulator itself so the definition is of STD type and has no argument,
which is exhibited by the dummy argument structure. On the other hand close is just an alias for real FreeBSD
close(2) so it has no linux arguments structure associated and in the system entry table it is not prefixed with linux
as it calls the real close(2) in the kernel.

4.1.3. Dummy syscalls

The Linux® emulation layer is not complete, as some syscalls are not implemented properly and some are not
implemented at all. The emulation layer employs a facility to mark unimplemented syscalls with the DUMMY macro.
These dummy definitions reside in linux_dummy.c in a form of DUMMY(syscall);, which is then translated to var-

13

https://www.FreeBSD.org/cgi/man.cgi?query=close&sektion=2&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=close&sektion=2&manpath=freebsd-release-ports

Signal handling

ious syscall auxiliary les and the implementation consists of printing a message saying that this syscall is not
implemented. The UNIMPL prototype is not used because we want to be able to identify the name of the syscall that
was called in order to know what syscalls are more important to implement.

4.2. Signal handling

Signal handling is done generally in the FreeBSD kernel for all binary compatibilities with a call to a compat-de-
pendent layer. Linux® compatibility layer defines linux_sendsig routine for this purpose.

4.2.1. Linux® sendsig

This routine rst checks whether the signal has been installed with a SA_SIGINFO in which case it calls lin-
ux_rt_sendsig routine instead. Furthermore, it allocates (or reuses an already existing) signal handle context,
then it builds a list of arguments for the signal handler. It translates the signal number based on the signal trans-
lation table, assigns a handler, translates sigset. Then it saves context for the sigreturn routine (various registers,
translated trap number and signal mask). Finally, it copies out the signal context to the userspace and prepares
context for the actual signal handler to run.

4.2.2. linux_rt_sendsig

This routine is similar to linux_sendsig just the signal context preparation is different. It adds siginfo, ucontext,
and some POSIX® parts. It might be worth considering whether those two functions could not be merged with a
benefit of less code duplication and possibly even faster execution.

4.2.3. linux_sigreturn

This syscall is used for return from the signal handler. It does some security checks and restores the original process
context. It also unmasks the signal in process signal mask.

4.3. Ptrace

Many UNIX® derivates implement the ptrace(2) syscall in order to allow various tracking and debugging features.
This facility enables the tracing process to obtain various information about the traced process, like register dumps,
any memory from the process address space, etc. and also to trace the process like in stepping an instruction or
between system entries (syscalls and traps). ptrace(2) also lets you set various information in the traced process
(registers etc.). ptrace(2) is a UNIX®-wide standard implemented in most UNIX®es around the world.

Linux® emulation in FreeBSD implements the ptrace(2) facility in linux_ptrace.c. The routines for converting
registers between Linux® and FreeBSD and the actual ptrace(2) syscall emulation syscall. The syscall is a long
switch block that implements its counterpart in FreeBSD for every ptrace(2) command. The ptrace(2) commands
are mostly equal between Linux® and FreeBSD so usually just a small modification is needed. For example, PT_GE-
TREGS in Linux® operates on direct data while FreeBSD uses a pointer to the data so after performing a (native)
ptrace(2) syscall, a copyout must be done to preserve Linux® semantics.

The ptrace(2) implementation in Linuxulator has some known weaknesses. There have been panics seen when us-
ing strace (which is a ptrace(2) consumer) in the Linuxulator environment. Also PT_SYSCALL is not implemented.

4.4. Traps

Whenever a Linux® process running in the emulation layer traps the trap itself is handled transparently with the
only exception of the trap translation. Linux® and FreeBSD differs in opinion on what a trap is so this is dealt with
here. The code is actually very short:

static int
translate_traps(int signal, int trap_code)
{

 if (signal != SIGBUS)
 return signal;

14

https://www.FreeBSD.org/cgi/man.cgi?query=ptrace&sektion=2&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=ptrace&sektion=2&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=ptrace&sektion=2&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=ptrace&sektion=2&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=ptrace&sektion=2&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=ptrace&sektion=2&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=ptrace&sektion=2&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=ptrace&sektion=2&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=ptrace&sektion=2&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=ptrace&sektion=2&manpath=freebsd-release-ports

Linux® emulation in FreeBSD

 switch (trap_code) {

 case T_PROTFLT:
 case T_TSSFLT:
 case T_DOUBLEFLT:
 case T_PAGEFLT:
 return SIGSEGV;

 default:
 return signal;
 }
}

4.5. Stack fixup

The RTLD run-time link-editor expects so called AUX tags on stack during an execve so a fixup must be done to
ensure this. Of course, every RTLD system is different so the emulation layer must provide its own stack fixup
routine to do this. So does Linuxulator. The elf_linux_fixup simply copies out AUX tags to the stack and adjusts
the stack of the user space process to point right after those tags. So RTLD works in a smart way.

4.6. A.OUT support

The Linux® emulation layer on i386 also supports Linux® A.OUT binaries. Pretty much everything described in
the previous sections must be implemented for A.OUT support (beside traps translation and signals sending). The
support for A.OUT binaries is no longer maintained, especially the 2.6 emulation does not work with it but this does
not cause any problem, as the linux-base in ports probably do not support A.OUT binaries at all. This support will
probably be removed in future. Most of the stu necessary for loading Linux® A.OUT binaries is in imgact_linux.c
le.

5. Linux® emulation layer -MI part
This section talks about machine independent part of the Linuxulator. It covers the emulation infrastructure need-
ed for Linux® 2.6 emulation, the thread local storage (TLS) implementation (on i386) and futexes. Then we talk
briey about some syscalls.

5.1. Description of NPTL

One of the major areas of progress in development of Linux® 2.6 was threading. Prior to 2.6, the Linux® threading
support was implemented in the linuxthreads library. The library was a partial implementation of POSIX® thread-
ing. The threading was implemented using separate processes for each thread using the clone syscall to let them
share the address space (and other things). The main weaknesses of this approach was that every thread had a
different PID, signal handling was broken (from the pthreads perspective), etc. Also the performance was not very
good (use of SIGUSR signals for threads synchronization, kernel resource consumption, etc.) so to overcome these
problems a new threading system was developed and named NPTL.

The NPTL library focused on two things but a third thing came along so it is usually considered a part of NPTL.
Those two things were embedding of threads into a process structure and futexes. The additional third thing was
TLS, which is not directly required by NPTL but the whole NPTL userland library depends on it. Those improve-
ments yielded in much improved performance and standards conformance. NPTL is a standard threading library
in Linux® systems these days.

The FreeBSD Linuxulator implementation approaches the NPTL in three main areas. The TLS, futexes and PID
mangling, which is meant to simulate the Linux® threads. Further sections describe each of these areas.

5.2. Linux® 2.6 emulation infrastructure

These sections deal with the way Linux® threads are managed and how we simulate that in FreeBSD.

15

Linux® 2.6 emulation infrastructure

5.2.1. Runtime determining of 2.6 emulation

The Linux® emulation layer in FreeBSD supports runtime setting of the emulated version. This is done via sysctl(8),
namely compat.linux.osrelease. Setting this sysctl(8) affects runtime behavior of the emulation layer. When set
to 2.6.x it sets the value of linux_use_linux26 while setting to something else keeps it unset. This variable (plus
per-prison variables of the very same kind) determines whether 2.6 infrastructure (mainly PID mangling) is used
in the code or not. The version setting is done system-wide and this affects all Linux® processes. The sysctl(8)
should not be changed when running any Linux® binary as it might harm things.

5.2.2. Linux® processes and thread identifiers

The semantics of Linux® threading are a little confusing and uses entirely different nomenclature to FreeBSD. A
process in Linux® consists of a struct task embedding two identifier elds - PID and TGID. PID is not a process
ID but it is a thread ID. The TGID identifies a thread group in other words a process. For single-threaded process
the PID equals the TGID.

The thread in NPTL is just an ordinary process that happens to have TGID not equal to PID and have a group leader
not equal to itself (and shared VM etc. of course). Everything else happens in the same way as to an ordinary
process. There is no separation of a shared status to some external structure like in FreeBSD. This creates some
duplication of information and possible data inconsistency. The Linux® kernel seems to use task -> group infor-
mation in some places and task information elsewhere and it is really not very consistent and looks error-prone.

Every NPTL thread is created by a call to the clone syscall with a specific set of ags (more in the next subsection).
The NPTL implements strict 1:1 threading.

In FreeBSD we emulate NPTL threads with ordinary FreeBSD processes that share VM space, etc. and the PID gym-
nastic is just mimicked in the emulation specific structure attached to the process. The structure attached to the
process looks like:

struct linux_emuldata {
 pid_t pid;

 int *child_set_tid; /* in clone(): Child.s TID to set on clone */
 int *child_clear_tid;/* in clone(): Child.s TID to clear on exit */

 struct linux_emuldata_shared *shared;

 int pdeath_signal; /* parent death signal */

 LIST_ENTRY(linux_emuldata) threads; /* list of linux threads */
};

The PID is used to identify the FreeBSD process that attaches this structure. The child_se_tid and
child_clear_tid are used for TID address copyout when a process exits and is created. The shared pointer
points to a structure shared among threads. The pdeath_signal variable identifies the parent death signal and the
threads pointer is used to link this structure to the list of threads. The linux_emuldata_shared structure looks
like:

struct linux_emuldata_shared {

 int refs;

 pid_t group_pid;

 LIST_HEAD(, linux_emuldata) threads; /* head of list of linux threads */
};

The refs is a reference counter being used to determine when we can free the structure to avoid memory leaks.
The group_pid is to identify PID (= TGID) of the whole process (= thread group). The threads pointer is the head
of the list of threads in the process.

16

https://www.FreeBSD.org/cgi/man.cgi?query=sysctl&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=sysctl&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=sysctl&sektion=8&manpath=freebsd-release-ports

Linux® emulation in FreeBSD

The linux_emuldata structure can be obtained from the process using em_find . The prototype of the function is:

struct linux_emuldata *em_find(struct proc *, int locked);

Here, proc is the process we want the emuldata structure from and the locked parameter determines whether we
want to lock or not. The accepted values are EMUL_DOLOCK and EMUL_DOUNLOCK. More about locking later.

5.2.3. PID mangling

As there is a difference in view as what to the idea of a process ID and thread ID is between FreeBSD and Linux®
we have to translate the view somehow. We do it by PID mangling. This means that we fake what a PID (=TGID) and
TID (=PID) is between kernel and userland. The rule of thumb is that in kernel (in Linuxulator) PID = PID and TGID
= shared -> group pid and to userland we present PID = shared -> group_pid and TID = proc -> p_pid . The
PID member of linux_emuldata structure is a FreeBSD PID.

The above affects mainly getpid, getppid, gettid syscalls. Where we use PID/TGID respectively. In copyout of TIDs
in child_clear_tid and child_set_tid we copy out FreeBSD PID.

5.2.4. Clone syscall

The clone syscall is the way threads are created in Linux®. The syscall prototype looks like this:

int linux_clone(l_int flags, void *stack, void *parent_tidptr, int dummy,
void * child_tidptr);

The flags parameter tells the syscall how exactly the processes should be cloned. As described above, Linux® can
create processes sharing various things independently, for example two processes can share le descriptors but
not VM, etc. Last byte of the flags parameter is the exit signal of the newly created process. The stack parameter
if non-NULL tells, where the thread stack is and if it is NULL we are supposed to copy-on-write the calling process
stack (i.e. do what normal fork(2) routine does). The parent_tidptr parameter is used as an address for copying out
process PID (i.e. thread id) once the process is sufficiently instantiated but is not runnable yet. The dummy parameter
is here because of the very strange calling convention of this syscall on i386. It uses the registers directly and does
not let the compiler do it what results in the need of a dummy syscall. The child_tidptr parameter is used as an
address for copying out PID once the process has finished forking and when the process exits.

The syscall itself proceeds by setting corresponding ags depending on the ags passed in. For example, CLONE_VM
maps to RFMEM (sharing of VM), etc. The only nit here is CLONE_FS and CLONE_FILES because FreeBSD does not
allow setting this separately so we fake it by not setting RFFDG (copying of fd table and other fs information) if
either of these is defined. This does not cause any problems, because those ags are always set together. After
setting the ags the process is forked using the internal fork1 routine, the process is instrumented not to be put on
a run queue, i.e. not to be set runnable. After the forking is done we possibly reparent the newly created process to
emulate CLONE_PARENT semantics. Next part is creating the emulation data. Threads in Linux® does not signal their
parents so we set exit signal to be 0 to disable this. After that setting of child_set_tid and child_clear_tid is
performed enabling the functionality later in the code. At this point we copy out the PID to the address specified
by parent_tidptr. The setting of process stack is done by simply rewriting thread frame %esp register (%rsp on
amd64). Next part is setting up TLS for the newly created process. After this vfork(2) semantics might be emulated
and finally the newly created process is put on a run queue and copying out its PID to the parent process via clone
return value is done.

The clone syscall is able and in fact is used for emulating classic fork(2) and vfork(2) syscalls. Newer glibc in a case
of 2.6 kernel uses clone to implement fork(2) and vfork(2) syscalls.

5.2.5. Locking

The locking is implemented to be per-subsystem because we do not expect a lot of contention on these. There are
two locks: emul_lock used to protect manipulating of linux_emuldata and emul_shared_lock used to manipulate
linux_emuldata_shared. The emul_lock is a nonsleepable blocking mutex while emul_shared_lock is a sleepable
blocking sx_lock . Due to the per-subsystem locking we can coalesce some locks and that is why the em nd offers
the non-locking access.

17

https://www.FreeBSD.org/cgi/man.cgi?query=fork&sektion=2&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=vfork&sektion=2&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=fork&sektion=2&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=vfork&sektion=2&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=fork&sektion=2&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=vfork&sektion=2&manpath=freebsd-release-ports

TLS

5.3. TLS

This section deals with TLS also known as thread local storage.

5.3.1. Introduction to threading

Threads in computer science are entities within a process that can be scheduled independently from each other.
The threads in the process share process wide data (le descriptors, etc.) but also have their own stack for their
own data. Sometimes there is a need for process-wide data specific to a given thread. Imagine a name of the thread
in execution or something like that. The traditional UNIX® threading API, pthreads provides a way to do it via
pthread_key_create(3), pthread_setspecific(3) and pthread_getspecific(3) where a thread can create a key to the
thread local data and using pthread_getspecific(3) or pthread_getspecific(3) to manipulate those data. You can
easily see that this is not the most comfortable way this could be accomplished. So various producers of C/C++
compilers introduced a better way. They defined a new modifier keyword thread that specifies that a variable is
thread specific. A new method of accessing such variables was developed as well (at least on i386). The pthreads
method tends to be implemented in userspace as a trivial lookup table. The performance of such a solution is not
very good. So the new method uses (on i386) segment registers to address a segment, where TLS area is stored so
the actual accessing of a thread variable is just appending the segment register to the address thus addressing via
it. The segment registers are usually %gs and %fs acting like segment selectors. Every thread has its own area where
the thread local data are stored and the segment must be loaded on every context switch. This method is very fast
and used almost exclusively in the whole i386 UNIX® world. Both FreeBSD and Linux® implement this approach
and it yields very good results. The only drawback is the need to reload the segment on every context switch which
can slowdown context switches. FreeBSD tries to avoid this overhead by using only 1 segment descriptor for this
while Linux® uses 3. Interesting thing is that almost nothing uses more than 1 descriptor (only Wine seems to use
2) so Linux® pays this unnecessary price for context switches.

5.3.2. Segments on i386

The i386 architecture implements the so called segments. A segment is a description of an area of memory. The
base address (bottom) of the memory area, the end of it (ceiling), type, protection, etc. The memory described by a
segment can be accessed using segment selector registers (%cs, %ds, %ss, %es, %fs, %gs). For example let us suppose
we have a segment which base address is 0x1234 and length and this code:

mov %edx,%gs:0x10

This will load the content of the %edx register into memory location 0x1244. Some segment registers have a special
use, for example %cs is used for code segment and %ss is used for stack segment but %fs and %gs are generally
unused. Segments are either stored in a global GDT table or in a local LDT table. LDT is accessed via an entry in the
GDT. The LDT can store more types of segments. LDT can be per process. Both tables define up to 8191 entries.

5.3.3. Implementation on Linux® i386

There are two main ways of setting up TLS in Linux®. It can be set when cloning a process using the clone syscall or
it can call set_thread_area . When a process passes CLONE_SETTLS ag to clone , the kernel expects the memory
pointed to by the %esi register a Linux® user space representation of a segment, which gets translated to the
machine representation of a segment and loaded into a GDT slot. The GDT slot can be specified with a number or
-1 can be used meaning that the system itself should choose the rst free slot. In practice, the vast majority of
programs use only one TLS entry and does not care about the number of the entry. We exploit this in the emulation
and in fact depend on it.

5.3.4. Emulation of Linux® TLS

5.3.4.1. i386

Loading of TLS for the current thread happens by calling set_thread_area while loading TLS for a second process
in clone is done in the separate block in clone . Those two functions are very similar. The only difference being
the actual loading of the GDT segment, which happens on the next context switch for the newly created process
while set_thread_area must load this directly. The code basically does this. It copies the Linux® form segment
descriptor from the userland. The code checks for the number of the descriptor but because this differs between

18

https://www.FreeBSD.org/cgi/man.cgi?query=pthread_key_create&sektion=3&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=pthread_setspecific&sektion=3&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=pthread_getspecific&sektion=3&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=pthread_getspecific&sektion=3&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=pthread_getspecific&sektion=3&manpath=freebsd-release-ports

Linux® emulation in FreeBSD

FreeBSD and Linux® we fake it a little. We only support indexes of 6, 3 and -1. The 6 is genuine Linux® number, 3
is genuine FreeBSD one and -1 means autoselection. Then we set the descriptor number to constant 3 and copy out
this to the userspace. We rely on the userspace process using the number from the descriptor but this works most
of the time (have never seen a case where this did not work) as the userspace process typically passes in 1. Then
we convert the descriptor from the Linux® form to a machine dependant form (i.e. operating system independent
form) and copy this to the FreeBSD defined segment descriptor. Finally we can load it. We assign the descriptor
to threads PCB (process control block) and load the %gs segment using load_gs . This loading must be done in a
critical section so that nothing can interrupt us. The CLONE_SETTLS case works exactly like this just the loading
using load_gs is not performed. The segment used for this (segment number 3) is shared for this use between
FreeBSD processes and Linux® processes so the Linux® emulation layer does not add any overhead over plain
FreeBSD.

5.3.4.2. amd64

The amd64 implementation is similar to the i386 one but there was initially no 32bit segment descriptor used for
this purpose (hence not even native 32bit TLS users worked) so we had to add such a segment and implement its
loading on every context switch (when a ag signaling use of 32bit is set). Apart from this the TLS loading is exactly
the same just the segment numbers are different and the descriptor format and the loading differs slightly.

5.4. Futexes

5.4.1. Introduction to synchronization

Threads need some kind of synchronization and POSIX® provides some of them: mutexes for mutual exclusion,
read-write locks for mutual exclusion with biased ratio of reads and writes and condition variables for signaling
a status change. It is interesting to note that POSIX® threading API lacks support for semaphores. Those synchro-
nization routines implementations are heavily dependant on the type threading support we have. In pure 1:M
(userspace) model the implementation can be solely done in userspace and thus be very fast (the condition vari-
ables will probably end up being implemented using signals, i.e. not fast) and simple. In 1:1 model, the situation
is also quite clear - the threads must be synchronized using kernel facilities (which is very slow because a syscall
must be performed). The mixed M:N scenario just combines the rst and second approach or rely solely on kernel.
Threads synchronization is a vital part of thread-enabled programming and its performance can affect resulting
program a lot. Recent benchmarks on FreeBSD operating system showed that an improved sx_lock implementa-
tion yielded 40% speedup in ZFS (a heavy sx user), this is in-kernel stu but it shows clearly how important the
performance of synchronization primitives is.

Threaded programs should be written with as little contention on locks as possible. Otherwise, instead of doing
useful work the thread just waits on a lock. As a result of this, the most well written threaded programs show little
locks contention.

5.4.2. Futexes introduction

Linux® implements 1:1 threading, i.e. it has to use in-kernel synchronization primitives. As stated earlier, well
written threaded programs have little lock contention. So a typical sequence could be performed as two atomic
increase/decrease mutex reference counter, which is very fast, as presented by the following example:

pthread_mutex_lock(&mutex);
....
pthread_mutex_unlock(&mutex);

1:1 threading forces us to perform two syscalls for those mutex calls, which is very slow.

The solution Linux® 2.6 implements is called futexes. Futexes implement the check for contention in userspace
and call kernel primitives only in a case of contention. Thus the typical case takes place without any kernel inter-
vention. This yields reasonably fast and flexible synchronization primitives implementation.

5.4.3. Futex API

The futex syscall looks like this:

19

Futexes

int futex(void *uaddr, int op, int val, struct timespec *timeout, void *uaddr2, int
 val3);

In this example uaddr is an address of the mutex in userspace, op is an operation we are about to perform and the
other parameters have per-operation meaning.

Futexes implement the following operations:

• FUTEX_WAIT

• FUTEX_WAKE

• FUTEX_FD

• FUTEX_REQUEUE

• FUTEX_CMP_REQUEUE

• FUTEX_WAKE_OP

5.4.3.1. FUTEX_WAIT

This operation verifies that on address uaddr the value val is written. If not, EWOULDBLOCK is returned, otherwise
the thread is queued on the futex and gets suspended. If the argument timeout is non-zero it specifies the maximum
time for the sleeping, otherwise the sleeping is infinite.

5.4.3.2. FUTEX_WAKE

This operation takes a futex at uaddr and wakes up val rst futexes queued on this futex.

5.4.3.3. FUTEX_FD

This operations associates a le descriptor with a given futex.

5.4.3.4. FUTEX_REQUEUE

This operation takes val threads queued on futex at uaddr, wakes them up, and takes val2 next threads and re-
queues them on futex at uaddr2.

5.4.3.5. FUTEX_CMP_REQUEUE

This operation does the same as FUTEX_REQUEUE but it checks that val3 equals to val rst.

5.4.3.6. FUTEX_WAKE_OP

This operation performs an atomic operation on val3 (which contains coded some other value) and uaddr. Then
it wakes up val threads on futex at uaddr and if the atomic operation returned a positive number it wakes up val2
threads on futex at uaddr2.

The operations implemented in FUTEX_WAKE_OP:

• FUTEX_OP_SET

• FUTEX_OP_ADD

• FUTEX_OP_OR

• FUTEX_OP_AND

• FUTEX_OP_XOR

20

Linux® emulation in FreeBSD

Note
There is no val2 parameter in the futex prototype. The val2 is taken from the struct
timespec *timeout parameter for operations FUTEX_REQUEUE, FUTEX_CMP_REQUEUE and FU-
TEX_WAKE_OP.

5.4.4. Futex emulation in FreeBSD

The futex emulation in FreeBSD is taken from NetBSD and further extended by us. It is placed in linux_futex.c
and linux_futex.h les. The futex structure looks like:

struct futex {
 void *f_uaddr;
 int f_refcount;

 LIST_ENTRY(futex) f_list;

 TAILQ_HEAD(lf_waiting_paroc, waiting_proc) f_waiting_proc;
};

And the structure waiting_proc is:

struct waiting_proc {

 struct thread *wp_t;

 struct futex *wp_new_futex;

 TAILQ_ENTRY(waiting_proc) wp_list;
};

5.4.4.1. futex_get / futex_put

A futex is obtained using the futex_get function, which searches a linear list of futexes and returns the found one
or creates a new futex. When releasing a futex from the use we call the futex_put function, which decreases a
reference counter of the futex and if the refcount reaches zero it is released.

5.4.4.2. futex_sleep

When a futex queues a thread for sleeping it creates a working_proc structure and puts this structure to the list
inside the futex structure then it just performs a tsleep(9) to suspend the thread. The sleep can be timed out.
After tsleep(9) returns (the thread was woken up or it timed out) the working_proc structure is removed from the
list and is destroyed. All this is done in the futex_sleep function. If we got woken up from futex_wake we have
wp_new_futex set so we sleep on it. This way the actual requeueing is done in this function.

5.4.4.3. futex_wake

Waking up a thread sleeping on a futex is performed in the futex_wake function. First in this function we mimic the
strange Linux® behavior, where it wakes up N threads for all operations, the only exception is that the REQUEUE
operations are performed on N+1 threads. But this usually does not make any difference as we are waking up all
threads. Next in the function in the loop we wake up n threads, after this we check if there is a new futex for
requeueing. If so, we requeue up to n2 threads on the new futex. This cooperates with futex_sleep.

5.4.4.4. futex_wake_op

The FUTEX_WAKE_OP operation is quite complicated. First we obtain two futexes at addresses uaddr and uaddr2 then
we perform the atomic operation using val3 and uaddr2. Then val waiters on the rst futex is woken up and if
the atomic operation condition holds we wake up val2 (i.e. timeout) waiter on the second futex.

21

https://www.FreeBSD.org/cgi/man.cgi?query=tsleep&sektion=9&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=tsleep&sektion=9&manpath=freebsd-release-ports

Various syscalls implementation

5.4.4.5. futex atomic operation

The atomic operation takes two parameters encoded_op and uaddr. The encoded operation encodes the operation
itself, comparing value, operation argument, and comparing argument. The pseudocode for the operation is like
this one:

oldval = *uaddr2
*uaddr2 = oldval OP oparg

And this is done atomically. First a copying in of the number at uaddr is performed and the operation is done. The
code handles page faults and if no page fault occurs oldval is compared to cmparg argument with cmp comparator.

5.4.4.6. Futex locking

Futex implementation uses two lock lists protecting sx_lock and global locks (either Giant or another sx_lock).
Every operation is performed locked from the start to the very end.

5.5. Various syscalls implementation

In this section I am going to describe some smaller syscalls that are worth mentioning because their implementa-
tion is not obvious or those syscalls are interesting from other point of view.

5.5.1. *at family of syscalls

During development of Linux® 2.6.16 kernel, the *at syscalls were added. Those syscalls (openat for example) work
exactly like their at-less counterparts with the slight exception of the dirfd parameter. This parameter changes
where the given le, on which the syscall is to be performed, is. When the filename parameter is absolute dirfd is
ignored but when the path to the le is relative, it comes to the play. The dirfd parameter is a directory relative to
which the relative pathname is checked. The dirfd parameter is a le descriptor of some directory or AT_FDCWD.
So for example the openat syscall can be like this:

file descriptor 123 = /tmp/foo/, current working directory = /tmp/

openat(123, /tmp/bah\, flags, mode) /* opens /tmp/bah */
openat(123, bah\, flags, mode) /* opens /tmp/foo/bah */
openat(AT_FDWCWD, bah\, flags, mode) /* opens /tmp/bah */
openat(stdio, bah\, flags, mode) /* returns error because stdio is not a directory */

This infrastructure is necessary to avoid races when opening les outside the working directory. Imagine that a
process consists of two threads, thread A and thread B. Thread A issues open(./tmp/foo/bah., flags, mode)
and before returning it gets preempted and thread B runs. Thread B does not care about the needs of thread A and
renames or removes /tmp/foo/ . We got a race. To avoid this we can open /tmp/foo and use it as dirfd for openat
syscall. This also enables user to implement per-thread working directories.

Linux® family of *at syscalls contains: linux_openat, linux_mkdirat, linux_mknodat, linux_fchownat, linux_fu-
timesat, linux_fstatat64, linux_unlinkat, linux_renameat, linux_linkat, linux_symlinkat, linux_read-
linkat, linux_fchmodat and linux_faccessat. All these are implemented using the modified namei(9) routine
and simple wrapping layer.

5.5.1.1. Implementation

The implementation is done by altering the namei(9) routine (described above) to take additional parameter dirfd
in its nameidata structure, which specifies the starting point of the pathname lookup instead of using the current
working directory every time. The resolution of dirfd from le descriptor number to a vnode is done in native
*at syscalls. When dirfd is AT_FDCWD the dvp entry in nameidata structure is NULL but when dirfd is a different
number we obtain a le for this le descriptor, check whether this le is valid and if there is vnode attached to it
then we get a vnode. Then we check this vnode for being a directory. In the actual namei(9) routine we simply sub-
stitute the dvp vnode for dp variable in the namei(9) function, which determines the starting point. The namei(9)
is not used directly but via a trace of different functions on various levels. For example the openat goes like this:

openat() --> kern_openat() --> vn_open() -> namei()

22

https://www.FreeBSD.org/cgi/man.cgi?query=namei&sektion=9&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=namei&sektion=9&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=namei&sektion=9&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=namei&sektion=9&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=namei&sektion=9&manpath=freebsd-release-ports

Linux® emulation in FreeBSD

For this reason kern_open and vn_open must be altered to incorporate the additional dirfd parameter. No compat
layer is created for those because there are not many users of this and the users can be easily converted. This
general implementation enables FreeBSD to implement their own *at syscalls. This is being discussed right now.

5.5.2. Ioctl

The ioctl interface is quite fragile due to its generality. We have to bear in mind that devices differ between Linux®
and FreeBSD so some care must be applied to do ioctl emulation work right. The ioctl handling is implemented in
linux_ioctl.c, where linux_ioctl function is defined. This function simply iterates over sets of ioctl handlers to
nd a handler that implements a given command. The ioctl syscall has three parameters, the le descriptor, com-
mand and an argument. The command is a 16-bit number, which in theory is divided into high 8 bits determining
class of the ioctl command and low 8 bits, which are the actual command within the given set. The emulation
takes advantage of this division. We implement handlers for each set, like sound_handler or disk_handler. Each
handler has a maximum command and a minimum command defined, which is used for determining what handler
is used. There are slight problems with this approach because Linux® does not use the set division consistently
so sometimes ioctls for a different set are inside a set they should not belong to (SCSI generic ioctls inside cdrom
set, etc.). FreeBSD currently does not implement many Linux® ioctls (compared to NetBSD, for example) but the
plan is to port those from NetBSD. The trend is to use Linux® ioctls even in the native FreeBSD drivers because
of the easy porting of applications.

5.5.3. Debugging

Every syscall should be debuggable. For this purpose we introduce a small infrastructure. We have the ldebug
facility, which tells whether a given syscall should be debugged (settable via a sysctl). For printing we have LMSG
and ARGS macros. Those are used for altering a printable string for uniform debugging messages.

6. Conclusion
6.1. Results

As of April 2007 the Linux® emulation layer is capable of emulating the Linux® 2.6.16 kernel quite well. The re-
maining problems concern futexes, unfinished *at family of syscalls, problematic signals delivery, missing epoll
and inotify and probably some bugs we have not discovered yet. Despite this we are capable of running basically
all the Linux® programs included in FreeBSD Ports Collection with Fedora Core 4 at 2.6.16 and there are some
rudimentary reports of success with Fedora Core 6 at 2.6.16. The Fedora Core 6 linux_base was recently committed
enabling some further testing of the emulation layer and giving us some more hints where we should put our effort
in implementing missing stu.

We are able to run the most used applications like www/linux-firefox, net-im/skype and some games from the
Ports Collection. Some of the programs exhibit bad behavior under 2.6 emulation but this is currently under in-
vestigation and hopefully will be xed soon. The only big application that is known not to work is the Linux®
Java™ Development Kit and this is because of the requirement of epoll facility which is not directly related to
the Linux® kernel 2.6.

We hope to enable 2.6.16 emulation by default some time after FreeBSD 7.0 is released at least to expose the 2.6
emulation parts for some wider testing. Once this is done we can switch to Fedora Core 6 linux_base, which is the
ultimate plan.

6.2. Future work

Future work should focus on fixing the remaining issues with futexes, implement the rest of the *at family of
syscalls, x the signal delivery and possibly implement the epoll and inotify facilities.

We hope to be able to run the most important programs flawlessly soon, so we will be able to switch to the 2.6
emulation by default and make the Fedora Core 6 the default linux_base because our currently used Fedora Core 4
is not supported any more.

23

https://www.freebsd.org/cgi/url.cgi?ports/www/linux-firefox/pkg-descr
https://www.freebsd.org/cgi/url.cgi?ports/net-im/skype/pkg-descr

Team

The other possible goal is to share our code with NetBSD and DragonflyBSD. NetBSD has some support for 2.6
emulation but its far from finished and not really tested. DragonflyBSD has expressed some interest in porting the
2.6 improvements.

Generally, as Linux® develops we would like to keep up with their development, implementing newly added
syscalls. Splice comes to mind rst. Some already implemented syscalls are also heavily crippled, for example
mremap and others. Some performance improvements can also be made, finer grained locking and others.

6.3. Team

I cooperated on this project with (in alphabetical order):

• John Baldwin <jhb@FreeBSD.org>

• Konstantin Belousov <kib@FreeBSD.org>

• Emmanuel Dreyfus

• Scot Hetzel

• Jung-uk Kim <jkim@FreeBSD.org>

• Alexander Leidinger <netchild@FreeBSD.org>

• Suleiman Souhlal <ssouhlal@FreeBSD.org>

• Li Xiao

• David Xu <davidxu@FreeBSD.org>

I would like to thank all those people for their advice, code reviews and general support.

7. Literatures
1. Marshall Kirk McKusick - George V. Nevile-Neil. Design and Implementation of the FreeBSD operating system.

Addison-Wesley, 2005.

2. https://tldp.org

3. https://www.kernel.org

24

mailto:jhb@FreeBSD.org
mailto:kib@FreeBSD.org
mailto:jkim@FreeBSD.org
mailto:netchild@FreeBSD.org
mailto:ssouhlal@FreeBSD.org
mailto:davidxu@FreeBSD.org
https://tldp.org
https://www.kernel.org

	Linux® emulation in FreeBSD
	Table of Contents
	1. Introduction
	2. A look inside…
	2.1. What is UNIX®
	2.2. Technical details
	2.2.1. Communication between kernel and user space process
	2.2.2. Communication between processes
	2.2.3. Process management
	2.2.4. Thread management

	2.3. What is FreeBSD?
	2.3.1. Technical details
	2.3.1.1. System entries
	2.3.1.2. Syscalls
	2.3.1.3. Traps
	2.3.1.4. Exits
	2.3.1.5. UNIX® primitives

	2.4. What is Linux®
	2.4.1. Technical details
	2.4.1.1. Syscalls
	2.4.1.2. Traps
	2.4.1.3. Exits
	2.4.1.4. UNIX® primitives

	2.5. What is emulation

	3. Emulation
	3.1. How emulation works in FreeBSD
	3.2. Common primitives in the FreeBSD kernel
	3.2.1. Locking primitives
	3.2.1.1. Atomic operations and memory barriers
	3.2.1.2. Refcounts
	3.2.1.3. Locks
	3.2.1.4. Spinning locks
	3.2.1.5. Blocking
	3.2.1.6. Sleeping
	3.2.1.7. Scheduling barriers
	3.2.1.8. Critical sections
	3.2.1.9. sched_pin/sched_unpin
	3.2.1.10. sched_bind/sched_unbind

	3.2.2. Proc structure
	3.2.3. VFS
	3.2.3.1. namei
	3.2.3.2. vn_fullpath
	3.2.3.3. Vnode operations
	3.2.3.4. File handler operations

	4. Linux® emulation layer -MD part
	4.1. Syscall handling
	4.1.1. Linux® prepsyscall
	4.1.2. Syscall writing
	4.1.3. Dummy syscalls

	4.2. Signal handling
	4.2.1. Linux® sendsig
	4.2.2. linux_rt_sendsig
	4.2.3. linux_sigreturn

	4.3. Ptrace
	4.4. Traps
	4.5. Stack fixup
	4.6. A.OUT support

	5. Linux® emulation layer -MI part
	5.1. Description of NPTL
	5.2. Linux® 2.6 emulation infrastructure
	5.2.1. Runtime determining of 2.6 emulation
	5.2.2. Linux® processes and thread identifiers
	5.2.3. PID mangling
	5.2.4. Clone syscall
	5.2.5. Locking

	5.3. TLS
	5.3.1. Introduction to threading
	5.3.2. Segments on i386
	5.3.3. Implementation on Linux® i386
	5.3.4. Emulation of Linux® TLS
	5.3.4.1. i386
	5.3.4.2. amd64

	5.4. Futexes
	5.4.1. Introduction to synchronization
	5.4.2. Futexes introduction
	5.4.3. Futex API
	5.4.3.1. FUTEX_WAIT
	5.4.3.2. FUTEX_WAKE
	5.4.3.3. FUTEX_FD
	5.4.3.4. FUTEX_REQUEUE
	5.4.3.5. FUTEX_CMP_REQUEUE
	5.4.3.6. FUTEX_WAKE_OP

	5.4.4. Futex emulation in FreeBSD
	5.4.4.1. futex_get / futex_put
	5.4.4.2. futex_sleep
	5.4.4.3. futex_wake
	5.4.4.4. futex_wake_op
	5.4.4.5. futex atomic operation
	5.4.4.6. Futex locking

	5.5. Various syscalls implementation
	5.5.1. *at family of syscalls
	5.5.1.1. Implementation

	5.5.2. Ioctl
	5.5.3. Debugging

	6. Conclusion
	6.1. Results
	6.2. Future work
	6.3. Team

	7. Literatures

