
Bash Reference Manual
Reference Documentation for Bash

Edition 2.5a, for Bash Version 2.05a.
November 2001

Chet Ramey, Case Western Reserve University
Brian Fox, Free Software Foundation

Copyright c© 1991-2001 Free Software Foundation, Inc.
Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Free Software Foundation.

Chapter 1: Introduction 1

1 Introduction

1.1 What is Bash?

Bash is the shell, or command language interpreter, for the gnu operating system. The
name is an acronym for the ‘Bourne-Again SHell’, a pun on Stephen Bourne, the author
of the direct ancestor of the current Unix shell /bin/sh, which appeared in the Seventh
Edition Bell Labs Research version of Unix.

Bash is largely compatible with sh and incorporates useful features from the Korn shell
ksh and the C shell csh. It is intended to be a conformant implementation of the ieee
posix Shell and Tools specification (ieee Working Group 1003.2). It offers functional
improvements over sh for both interactive and programming use.

While the gnu operating system provides other shells, including a version of csh, Bash
is the default shell. Like other gnu software, Bash is quite portable. It currently runs on
nearly every version of Unix and a few other operating systems − independently-supported
ports exist for ms-dos, os/2, Windows 95/98, and Windows nt.

1.2 What is a shell?

At its base, a shell is simply a macro processor that executes commands. A Unix shell is
both a command interpreter, which provides the user interface to the rich set of gnu utilities,
and a programming language, allowing these utilitites to be combined. Files containing
commands can be created, and become commands themselves. These new commands have
the same status as system commands in directories such as ‘/bin’, allowing users or groups
to establish custom environments.

A shell allows execution of gnu commands, both synchronously and asynchronously.
The shell waits for synchronous commands to complete before accepting more input; asyn-
chronous commands continue to execute in parallel with the shell while it reads and executes
additional commands. The redirection constructs permit fine-grained control of the input
and output of those commands. Moreover, the shell allows control over the contents of com-
mands’ environments. Shells may be used interactively or non-interactively: they accept
input typed from the keyboard or from a file.

Shells also provide a small set of built-in commands (builtins) implementing function-
ality impossible or inconvenient to obtain via separate utilities. For example, cd, break,
continue, and exec) cannot be implemented outside of the shell because they directly
manipulate the shell itself. The history, getopts, kill, or pwd builtins, among others,
could be implemented in separate utilities, but they are more convenient to use as builtin
commands. All of the shell builtins are described in subsequent sections.

While executing commands is essential, most of the power (and complexity) of shells
is due to their embedded programming languages. Like any high-level language, the shell
provides variables, flow control constructs, quoting, and functions.

Shells offer features geared specifically for interactive use rather than to augment the pro-
gramming language. These interactive features include job control, command line editing,
history and aliases. Each of these features is described in this manual.

2 Bash Reference Manual

Chapter 2: Definitions 3

2 Definitions

These definitions are used throughout the remainder of this manual.

POSIX A family of open system standards based on Unix. Bash is concerned with
posix 1003.2, the Shell and Tools Standard.

blank A space or tab character.

builtin A command that is implemented internally by the shell itself, rather than by
an executable program somewhere in the file system.

control operator
A word that performs a control function. It is a newline or one of the following:
‘||’, ‘&&’, ‘&’, ‘;’, ‘;;’, ‘|’, ‘(’, or ‘)’.

exit status
The value returned by a command to its caller. The value is restricted to eight
bits, so the maximum value is 255.

field A unit of text that is the result of one of the shell expansions. After expansion,
when executing a command, the resulting fields are used as the command name
and arguments.

filename A string of characters used to identify a file.

job A set of processes comprising a pipeline, and any processes descended from it,
that are all in the same process group.

job control
A mechanism by which users can selectively stop (suspend) and restart (resume)
execution of processes.

metacharacter
A character that, when unquoted, separates words. A metacharacter is a blank
or one of the following characters: ‘|’, ‘&’, ‘;’, ‘(’, ‘)’, ‘<’, or ‘>’.

name A word consisting solely of letters, numbers, and underscores, and beginning
with a letter or underscore. Names are used as shell variable and function names.
Also referred to as an identifier.

operator A control operator or a redirection operator. See Section 3.6 [Redirec-
tions], page 22, for a list of redirection operators.

process group
A collection of related processes each having the same process group id.

process group ID
A unique identifer that represents a process group during its lifetime.

reserved word
A word that has a special meaning to the shell. Most reserved words introduce
shell flow control constructs, such as for and while.

return status
A synonym for exit status.

4 Bash Reference Manual

signal A mechanism by which a process may be notified by the kernel of an event
occurring in the system.

special builtin
A shell builtin command that has been classified as special by the posix 1003.2
standard.

token A sequence of characters considered a single unit by the shell. It is either a
word or an operator.

word A token that is not an operator.

Chapter 3: Basic Shell Features 5

3 Basic Shell Features

Bash is an acronym for ‘Bourne-Again SHell’. The Bourne shell is the traditional Unix
shell originally written by Stephen Bourne. All of the Bourne shell builtin commands are
available in Bash, and the rules for evaluation and quoting are taken from the posix 1003.2
specification for the ‘standard’ Unix shell.

This chapter briefly summarizes the shell’s ‘building blocks’: commands, control struc-
tures, shell functions, shell parameters, shell expansions, redirections, which are a way to
direct input and output from and to named files, and how the shell executes commands.

3.1 Shell Syntax

When the shell reads input, it proceeds through a sequence of operations. If the input
indicates the beginning of a comment, the shell ignores the comment symbol (‘#’), and the
rest of that line.

Otherwise, roughly speaking, the shell reads its input and divides the input into words
and operators, employing the quoting rules to select which meanings to assign various words
and characters.

The shell then parses these tokens into commands and other constructs, removes the
special meaning of certain words or characters, expands others, redirects input and output
as needed, executes the specified command, waits for the command’s exit status, and makes
that exit status available for further inspection or processing.

3.1.1 Shell Operation

The following is a brief description of the shell’s operation when it reads and executes a
command. Basically, the shell does the following:

1. Reads its input from a file (see Section 3.8 [Shell Scripts], page 29), from a string
supplied as an argument to the ‘-c’ invocation option (see Section 6.1 [Invoking Bash],
page 59), or from the user’s terminal.

2. Breaks the input into words and operators, obeying the quoting rules described in
Section 3.1.2 [Quoting], page 6. These tokens are separated by metacharacters. Alias
expansion is performed by this step (see Section 6.6 [Aliases], page 67).

3. Parses the tokens into simple and compound commands (see Section 3.2 [Shell Com-
mands], page 7).

4. Performs the various shell expansions (see Section 3.5 [Shell Expansions], page 15),
breaking the expanded tokens into lists of filenames (see Section 3.5.8 [Filename Ex-
pansion], page 20) and commands and arguments.

5. Performs any necessary redirections (see Section 3.6 [Redirections], page 22) and re-
moves the redirection operators and their operands from the argument list.

6. Executes the command (see Section 3.7 [Executing Commands], page 25).

7. Optionally waits for the command to complete and collects its exit status (see Sec-
tion 3.7.5 [Exit Status], page 28).

6 Bash Reference Manual

3.1.2 Quoting

Quoting is used to remove the special meaning of certain characters or words to the shell.
Quoting can be used to disable special treatment for special characters, to prevent reserved
words from being recognized as such, and to prevent parameter expansion.

Each of the shell metacharacters (see Chapter 2 [Definitions], page 3) has special meaning
to the shell and must be quoted if it is to represent itself. When the command history
expansion facilities are being used, the history expansion character, usually ‘!’, must be
quoted to prevent history expansion. See Section 9.1 [Bash History Facilities], page 103,
for more details concerning history expansion. There are three quoting mechanisms: the
escape character, single quotes, and double quotes.

3.1.2.1 Escape Character

A non-quoted backslash ‘\’ is the Bash escape character. It preserves the literal value of
the next character that follows, with the exception of newline. If a \newline pair appears,
and the backslash itself is not quoted, the \newline is treated as a line continuation (that
is, it is removed from the input stream and effectively ignored).

3.1.2.2 Single Quotes

Enclosing characters in single quotes (‘’’) preserves the literal value of each character
within the quotes. A single quote may not occur between single quotes, even when preceded
by a backslash.

3.1.2.3 Double Quotes

Enclosing characters in double quotes (‘"’) preserves the literal value of all characters
within the quotes, with the exception of ‘$’, ‘‘’, and ‘\’. The characters ‘$’ and ‘‘’ retain
their special meaning within double quotes (see Section 3.5 [Shell Expansions], page 15).
The backslash retains its special meaning only when followed by one of the following char-
acters: ‘$’, ‘‘’, ‘"’, ‘\’, or newline. Within double quotes, backslashes that are followed
by one of these characters are removed. Backslashes preceding characters without a spe-
cial meaning are left unmodified. A double quote may be quoted within double quotes by
preceding it with a backslash.

The special parameters ‘*’ and ‘@’ have special meaning when in double quotes (see
Section 3.5.3 [Shell Parameter Expansion], page 17).

3.1.2.4 ANSI-C Quoting

Words of the form $’string’ are treated specially. The word expands to string, with
backslash-escaped characters replaced as specified by the ANSI C standard. Backslash
escape sequences, if present, are decoded as follows:

\a alert (bell)

\b backspace

\e an escape character (not ANSI C)

Chapter 3: Basic Shell Features 7

\f form feed

\n newline

\r carriage return

\t horizontal tab

\v vertical tab

\\ backslash

\’ single quote

\nnn the eight-bit character whose value is the octal value nnn (one to three digits)

\xHH the eight-bit character whose value is the hexadecimal value HH (one or two
hex digits)

The expanded result is single-quoted, as if the dollar sign had not been present.

3.1.2.5 Locale-Specific Translation

A double-quoted string preceded by a dollar sign (‘$’) will cause the string to be trans-
lated according to the current locale. If the current locale is C or POSIX, the dollar sign is
ignored. If the string is translated and replaced, the replacement is double-quoted.

Some systems use the message catalog selected by the LC_MESSAGES shell variable. Others
create the name of the message catalog from the value of the TEXTDOMAIN shell variable,
possibly adding a suffix of ‘.mo’. If you use the TEXTDOMAIN variable, you may need to set
the TEXTDOMAINDIR variable to the location of the message catalog files. Still others use both
variables in this fashion: TEXTDOMAINDIR/LC_MESSAGES/LC MESSAGES/TEXTDOMAIN.mo.

3.1.3 Comments

In a non-interactive shell, or an interactive shell in which the interactive_comments
option to the shopt builtin is enabled (see Section 4.2 [Bash Builtins], page 36), a word
beginning with ‘#’ causes that word and all remaining characters on that line to be ignored.
An interactive shell without the interactive_comments option enabled does not allow
comments. The interactive_comments option is on by default in interactive shells. See
Section 6.3 [Interactive Shells], page 63, for a description of what makes a shell interactive.

3.2 Shell Commands

A simple shell command such as echo a b c consists of the command itself followed by
arguments, separated by spaces.

More complex shell commands are composed of simple commands arranged together in
a variety of ways: in a pipeline in which the output of one command becomes the input of
a second, in a loop or conditional construct, or in some other grouping.

8 Bash Reference Manual

3.2.1 Simple Commands

A simple command is the kind of command encountered most often. It’s just a sequence
of words separated by blanks, terminated by one of the shell’s control operators (see Chap-
ter 2 [Definitions], page 3). The first word generally specifies a command to be executed,
with the rest of the words being that command’s arguments.

The return status (see Section 3.7.5 [Exit Status], page 28) of a simple command is its
exit status as provided by the posix 1003.1 waitpid function, or 128+n if the command
was terminated by signal n.

3.2.2 Pipelines

A pipeline is a sequence of simple commands separated by ‘|’.
The format for a pipeline is

[time [-p]] [!] command1 [| command2 ...]

The output of each command in the pipeline is connected via a pipe to the input of the
next command. That is, each command reads the previous command’s output.

The reserved word time causes timing statistics to be printed for the pipeline once it
finishes. The statistics currently consist of elapsed (wall-clock) time and user and system
time consumed by the command’s execution. The ‘-p’ option changes the output format
to that specified by posix. The TIMEFORMAT variable may be set to a format string that
specifies how the timing information should be displayed. See Section 5.2 [Bash Variables],
page 51, for a description of the available formats. The use of time as a reserved word per-
mits the timing of shell builtins, shell functions, and pipelines. An external time command
cannot time these easily.

If the pipeline is not executed asynchronously (see Section 3.2.3 [Lists], page 8), the shell
waits for all commands in the pipeline to complete.

Each command in a pipeline is executed in its own subshell (see Section 3.7.3 [Command
Execution Environment], page 26). The exit status of a pipeline is the exit status of the
last command in the pipeline. If the reserved word ‘!’ precedes the pipeline, the exit status
is the logical negation of the exit status of the last command.

3.2.3 Lists of Commands

A list is a sequence of one or more pipelines separated by one of the operators ‘;’, ‘&’,
‘&&’, or ‘||’, and optionally terminated by one of ‘;’, ‘&’, or a newline.

Of these list operators, ‘&&’ and ‘||’ have equal precedence, followed by ‘;’ and ‘&’, which
have equal precedence.

If a command is terminated by the control operator ‘&’, the shell executes the command
asynchronously in a subshell. This is known as executing the command in the background.
The shell does not wait for the command to finish, and the return status is 0 (true). When
job control is not active (see Chapter 7 [Job Control], page 75), the standard input for
asynchronous commands, in the absence of any explicit redirections, is redirected from
/dev/null.

Commands separated by a ‘;’ are executed sequentially; the shell waits for each command
to terminate in turn. The return status is the exit status of the last command executed.

Chapter 3: Basic Shell Features 9

The control operators ‘&&’ and ‘||’ denote and lists and or lists, respectively. An and
list has the form

command1 && command2

command2 is executed if, and only if, command1 returns an exit status of zero.
An or list has the form

command1 || command2

command2 is executed if, and only if, command1 returns a non-zero exit status.
The return status of and and or lists is the exit status of the last command executed

in the list.

3.2.4 Looping Constructs

Bash supports the following looping constructs.
Note that wherever a ‘;’ appears in the description of a command’s syntax, it may be

replaced with one or more newlines.

until The syntax of the until command is:
until test-commands; do consequent-commands; done

Execute consequent-commands as long as test-commands has an exit status
which is not zero. The return status is the exit status of the last command
executed in consequent-commands, or zero if none was executed.

while The syntax of the while command is:
while test-commands; do consequent-commands; done

Execute consequent-commands as long as test-commands has an exit status
of zero. The return status is the exit status of the last command executed in
consequent-commands, or zero if none was executed.

for The syntax of the for command is:
for name [in words ...]; do commands; done

Expand words, and execute commands once for each member in the resultant
list, with name bound to the current member. If ‘in words’ is not present, the
for command executes the commands once for each positional parameter that
is set, as if ‘in "$@"’ had been specified (see Section 3.4.2 [Special Parameters],
page 14). The return status is the exit status of the last command that executes.
If there are no items in the expansion of words, no commands are executed, and
the return status is zero.
An alternate form of the for command is also supported:

for ((expr1 ; expr2 ; expr3)) ; do commands ; done

First, the arithmetic expression expr1 is evaluated according to the rules de-
scribed below (see Section 6.5 [Shell Arithmetic], page 66). The arithmetic
expression expr2 is then evaluated repeatedly until it evaluates to zero. Each
time expr2 evaluates to a non-zero value, commands are executed and the arith-
metic expression expr3 is evaluated. If any expression is omitted, it behaves as
if it evaluates to 1. The return value is the exit status of the last command in
list that is executed, or false if any of the expressions is invalid.

10 Bash Reference Manual

The break and continue builtins (see Section 4.1 [Bourne Shell Builtins], page 31) may
be used to control loop execution.

3.2.5 Conditional Constructs

if The syntax of the if command is:
if test-commands; then

consequent-commands;
[elif more-test-commands; then

more-consequents;]
[else alternate-consequents;]
fi

The test-commands list is executed, and if its return status is zero, the
consequent-commands list is executed. If test-commands returns a non-zero
status, each elif list is executed in turn, and if its exit status is zero, the
corresponding more-consequents is executed and the command completes. If
‘else alternate-consequents’ is present, and the final command in the final
if or elif clause has a non-zero exit status, then alternate-consequents is
executed. The return status is the exit status of the last command executed,
or zero if no condition tested true.

case The syntax of the case command is:
case word in [[(] pattern [| pattern]...) command-list ;;]... esac

case will selectively execute the command-list corresponding to the first pat-
tern that matches word. The ‘|’ is used to separate multiple patterns, and
the ‘)’ operator terminates a pattern list. A list of patterns and an associated
command-list is known as a clause. Each clause must be terminated with ‘;;’.
The word undergoes tilde expansion, parameter expansion, command substitu-
tion, arithmetic expansion, and quote removal before matching is attempted.
Each pattern undergoes tilde expansion, parameter expansion, command sub-
stitution, and arithmetic expansion.
There may be an arbitrary number of case clauses, each terminated by a ‘;;’.
The first pattern that matches determines the command-list that is executed.
Here is an example using case in a script that could be used to describe one
interesting feature of an animal:

echo -n "Enter the name of an animal: "
read ANIMAL
echo -n "The $ANIMAL has "
case $ANIMAL in
horse | dog | cat) echo -n "four";;
man | kangaroo) echo -n "two";;
*) echo -n "an unknown number of";;

esac
echo " legs."

The return status is zero if no pattern is matched. Otherwise, the return status
is the exit status of the command-list executed.

Chapter 3: Basic Shell Features 11

select

The select construct allows the easy generation of menus. It has almost the
same syntax as the for command:

select name [in words ...]; do commands; done

The list of words following in is expanded, generating a list of items. The set of
expanded words is printed on the standard error output stream, each preceded
by a number. If the ‘in words’ is omitted, the positional parameters are printed,
as if ‘in "$@"’ had been specifed. The PS3 prompt is then displayed and a line
is read from the standard input. If the line consists of a number corresponding
to one of the displayed words, then the value of name is set to that word. If
the line is empty, the words and prompt are displayed again. If EOF is read,
the select command completes. Any other value read causes name to be set
to null. The line read is saved in the variable REPLY.
The commands are executed after each selection until a break command is
executed, at which point the select command completes.
Here is an example that allows the user to pick a filename from the current
directory, and displays the name and index of the file selected.

select fname in *;
do
echo you picked $fname \($REPLY\)
break;
done

((...))

((expression))

The arithmetic expression is evaluated according to the rules described below
(see Section 6.5 [Shell Arithmetic], page 66). If the value of the expression is
non-zero, the return status is 0; otherwise the return status is 1. This is exactly
equivalent to

let "expression"

See Section 4.2 [Bash Builtins], page 36, for a full description of the let builtin.

[[...]]

[[expression]]

Return a status of 0 or 1 depending on the evaluation of the conditional expres-
sion expression. Expressions are composed of the primaries described below in
Section 6.4 [Bash Conditional Expressions], page 64. Word splitting and file-
name expansion are not performed on the words between the ‘[[’ and ‘]]’; tilde
expansion, parameter and variable expansion, arithmetic expansion, command
substitution, process substitution, and quote removal are performed.
When the ‘==’ and ‘!=’ operators are used, the string to the right of the operator
is considered a pattern and matched according to the rules described below in
Section 3.5.8.1 [Pattern Matching], page 21. The return value is 0 if the string
matches or does not match the pattern, respectively, and 1 otherwise. Any part
of the pattern may be quoted to force it to be matched as a string.

12 Bash Reference Manual

Expressions may be combined using the following operators, listed in decreasing
order of precedence:

(expression)
Returns the value of expression. This may be used to override the
normal precedence of operators.

! expression
True if expression is false.

expression1 && expression2
True if both expression1 and expression2 are true.

expression1 || expression2
True if either expression1 or expression2 is true.

The && and || commands do not execute expression2 if the value of expression1
is sufficient to determine the return value of the entire conditional expression.

3.2.6 Grouping Commands

Bash provides two ways to group a list of commands to be executed as a unit. When com-
mands are grouped, redirections may be applied to the entire command list. For example,
the output of all the commands in the list may be redirected to a single stream.

()

(list)

Placing a list of commands between parentheses causes a subshell to be created,
and each of the commands in list to be executed in that subshell. Since the list
is executed in a subshell, variable assignments do not remain in effect after the
subshell completes.

{}

{ list; }

Placing a list of commands between curly braces causes the list to be executed
in the current shell context. No subshell is created. The semicolon (or newline)
following list is required.

In addition to the creation of a subshell, there is a subtle difference between these two
constructs due to historical reasons. The braces are reserved words, so they must be
separated from the list by blanks. The parentheses are operators, and are recognized as
separate tokens by the shell even if they are not separated from the list by whitespace.

The exit status of both of these constructs is the exit status of list.

3.3 Shell Functions

Shell functions are a way to group commands for later execution using a single name for
the group. They are executed just like a "regular" command. When the name of a shell
function is used as a simple command name, the list of commands associated with that
function name is executed. Shell functions are executed in the current shell context; no new
process is created to interpret them.

Functions are declared using this syntax:

Chapter 3: Basic Shell Features 13

[function] name () { command-list; }

This defines a shell function named name. The reserved word function is optional. If
the function reserved word is supplied, the parentheses are optional. The body of the
function is the command-list between { and }. This list is executed whenever name is
specified as the name of a command. The exit status of a function is the exit status of the
last command executed in the body.

Note that for historical reasons, the curly braces that surround the body of the function
must be separated from the body by blanks or newlines. This is because the braces are
reserved words and are only recognized as such when they are separated by whitespace.
Also, the command-list must be terminated with a semicolon or a newline.

When a function is executed, the arguments to the function become the positional pa-
rameters during its execution (see Section 3.4.1 [Positional Parameters], page 14). The
special parameter ‘#’ that expands to the number of positional parameters is updated to
reflect the change. Positional parameter 0 is unchanged. The FUNCNAME variable is set to
the name of the function while the function is executing.

If the builtin command return is executed in a function, the function completes and
execution resumes with the next command after the function call. When a function com-
pletes, the values of the positional parameters and the special parameter ‘#’ are restored
to the values they had prior to the function’s execution. If a numeric argument is given to
return, that is the function’s return status; otherwise the function’s return status is the
exit status of the last command executed before the return.

Variables local to the function may be declared with the local builtin. These variables
are visible only to the function and the commands it invokes.

Functions may be recursive. No limit is placed on the number of recursive calls.

3.4 Shell Parameters

A parameter is an entity that stores values. It can be a name, a number, or one of
the special characters listed below. For the shell’s purposes, a variable is a parameter
denoted by a name. A variable has a value and zero or more attributes. Attributes are
assigned using the declare builtin command (see the description of the declare builtin in
Section 4.2 [Bash Builtins], page 36).

A parameter is set if it has been assigned a value. The null string is a valid value. Once
a variable is set, it may be unset only by using the unset builtin command.

A variable may be assigned to by a statement of the form
name=[value]

If value is not given, the variable is assigned the null string. All values undergo tilde
expansion, parameter and variable expansion, command substitution, arithmetic expansion,
and quote removal (detailed below). If the variable has its integer attribute set, then
value is subject to arithmetic expansion even if the $((...)) expansion is not used (see
Section 3.5.5 [Arithmetic Expansion], page 19). Word splitting is not performed, with the
exception of "$@" as explained below. Filename expansion is not performed. Assignment
statements may also appear as arguments to the declare, typeset, export, readonly, and
local builtin commands.

14 Bash Reference Manual

3.4.1 Positional Parameters

A positional parameter is a parameter denoted by one or more digits, other than the
single digit 0. Positional parameters are assigned from the shell’s arguments when it is
invoked, and may be reassigned using the set builtin command. Positional parameter N
may be referenced as ${N}, or as $N when N consists of a single digit. Positional parameters
may not be assigned to with assignment statements. The set and shift builtins are used
to set and unset them (see Chapter 4 [Shell Builtin Commands], page 31). The positional
parameters are temporarily replaced when a shell function is executed (see Section 3.3 [Shell
Functions], page 12).

When a positional parameter consisting of more than a single digit is expanded, it must
be enclosed in braces.

3.4.2 Special Parameters

The shell treats several parameters specially. These parameters may only be referenced;
assignment to them is not allowed.

* Expands to the positional parameters, starting from one. When the expansion
occurs within double quotes, it expands to a single word with the value of each
parameter separated by the first character of the IFS special variable. That is,
"$*" is equivalent to "$1c$2c...", where c is the first character of the value
of the IFS variable. If IFS is unset, the parameters are separated by spaces. If
IFS is null, the parameters are joined without intervening separators.

@ Expands to the positional parameters, starting from one. When the expan-
sion occurs within double quotes, each parameter expands to a separate word.
That is, "$@" is equivalent to "$1" "$2" When there are no positional
parameters, "$@" and $@ expand to nothing (i.e., they are removed).

Expands to the number of positional parameters in decimal.

? Expands to the exit status of the most recently executed foreground pipeline.

- (A hyphen.) Expands to the current option flags as specified upon invocation,
by the set builtin command, or those set by the shell itself (such as the ‘-i’
option).

$ Expands to the process id of the shell. In a () subshell, it expands to the
process id of the invoking shell, not the subshell.

! Expands to the process id of the most recently executed background (asyn-
chronous) command.

0 Expands to the name of the shell or shell script. This is set at shell initialization.
If Bash is invoked with a file of commands (see Section 3.8 [Shell Scripts],
page 29), $0 is set to the name of that file. If Bash is started with the ‘-c’
option (see Section 6.1 [Invoking Bash], page 59), then $0 is set to the first
argument after the string to be executed, if one is present. Otherwise, it is set
to the filename used to invoke Bash, as given by argument zero.

Chapter 3: Basic Shell Features 15

_ (An underscore.) At shell startup, set to the absolute filename of the shell or
shell script being executed as passed in the argument list. Subsequently, ex-
pands to the last argument to the previous command, after expansion. Also
set to the full pathname of each command executed and placed in the environ-
ment exported to that command. When checking mail, this parameter holds
the name of the mail file.

3.5 Shell Expansions

Expansion is performed on the command line after it has been split into tokens. There
are seven kinds of expansion performed:
• brace expansion
• tilde expansion
• parameter and variable expansion
• command substitution
• arithmetic expansion
• word splitting
• filename expansion

The order of expansions is: brace expansion, tilde expansion, parameter, variable, and
arithmetic expansion and command substitution (done in a left-to-right fashion), word
splitting, and filename expansion.

On systems that can support it, there is an additional expansion available: process
substitution. This is performed at the same time as parameter, variable, and arithmetic
expansion and command substitution.

Only brace expansion, word splitting, and filename expansion can change the number
of words of the expansion; other expansions expand a single word to a single word. The
only exceptions to this are the expansions of "$@" (see Section 3.4.2 [Special Parameters],
page 14) and "${name[@]}" (see Section 6.7 [Arrays], page 68).

After all expansions, quote removal (see Section 3.5.9 [Quote Removal], page 22) is
performed.

3.5.1 Brace Expansion

Brace expansion is a mechanism by which arbitrary strings may be generated. This mech-
anism is similar to filename expansion (see Section 3.5.8 [Filename Expansion], page 20),
but the file names generated need not exist. Patterns to be brace expanded take the form
of an optional preamble, followed by a series of comma-separated strings between a pair of
braces, followed by an optional postscript. The preamble is prefixed to each string contained
within the braces, and the postscript is then appended to each resulting string, expanding
left to right.

Brace expansions may be nested. The results of each expanded string are not sorted;
left to right order is preserved. For example,

bash$ echo a{d,c,b}e
ade ace abe

16 Bash Reference Manual

Brace expansion is performed before any other expansions, and any characters special
to other expansions are preserved in the result. It is strictly textual. Bash does not apply
any syntactic interpretation to the context of the expansion or the text between the braces.
To avoid conflicts with parameter expansion, the string ‘${’ is not considered eligible for
brace expansion.

A correctly-formed brace expansion must contain unquoted opening and closing braces,
and at least one unquoted comma. Any incorrectly formed brace expansion is left un-
changed.

This construct is typically used as shorthand when the common prefix of the strings to
be generated is longer than in the above example:

mkdir /usr/local/src/bash/{old,new,dist,bugs}

or
chown root /usr/{ucb/{ex,edit},lib/{ex?.?*,how_ex}}

3.5.2 Tilde Expansion

If a word begins with an unquoted tilde character (‘~’), all of the characters up to
the first unquoted slash (or all characters, if there is no unquoted slash) are considered a
tilde-prefix. If none of the characters in the tilde-prefix are quoted, the characters in the
tilde-prefix following the tilde are treated as a possible login name. If this login name is the
null string, the tilde is replaced with the value of the HOME shell variable. If HOME is unset,
the home directory of the user executing the shell is substituted instead. Otherwise, the
tilde-prefix is replaced with the home directory associated with the specified login name.

If the tilde-prefix is ‘~+’, the value of the shell variable PWD replaces the tilde-prefix. If
the tilde-prefix is ‘~-’, the value of the shell variable OLDPWD, if it is set, is substituted.

If the characters following the tilde in the tilde-prefix consist of a number N, optionally
prefixed by a ‘+’ or a ‘-’, the tilde-prefix is replaced with the corresponding element from the
directory stack, as it would be displayed by the dirs builtin invoked with the characters
following tilde in the tilde-prefix as an argument (see Section 6.8 [The Directory Stack],
page 69). If the tilde-prefix, sans the tilde, consists of a number without a leading ‘+’ or
‘-’, ‘+’ is assumed.

If the login name is invalid, or the tilde expansion fails, the word is left unchanged.
Each variable assignment is checked for unquoted tilde-prefixes immediately following a

‘:’ or ‘=’. In these cases, tilde expansion is also performed. Consequently, one may use file
names with tildes in assignments to PATH, MAILPATH, and CDPATH, and the shell assigns the
expanded value.

The following table shows how Bash treats unquoted tilde-prefixes:

~ The value of $HOME

~/foo ‘$HOME/foo’

~fred/foo
The subdirectory foo of the home directory of the user fred

~+/foo ‘$PWD/foo’

~-/foo ‘${OLDPWD-’~-’}/foo’

Chapter 3: Basic Shell Features 17

~N The string that would be displayed by ‘dirs +N ’

~+N The string that would be displayed by ‘dirs +N ’

~-N The string that would be displayed by ‘dirs -N ’

3.5.3 Shell Parameter Expansion

The ‘$’ character introduces parameter expansion, command substitution, or arithmetic
expansion. The parameter name or symbol to be expanded may be enclosed in braces, which
are optional but serve to protect the variable to be expanded from characters immediately
following it which could be interpreted as part of the name.

When braces are used, the matching ending brace is the first ‘}’ not escaped by a
backslash or within a quoted string, and not within an embedded arithmetic expansion,
command substitution, or parameter expansion.

The basic form of parameter expansion is ${parameter}. The value of parameter is
substituted. The braces are required when parameter is a positional parameter with more
than one digit, or when parameter is followed by a character that is not to be interpreted
as part of its name.

If the first character of parameter is an exclamation point, a level of variable indirection
is introduced. Bash uses the value of the variable formed from the rest of parameter as
the name of the variable; this variable is then expanded and that value is used in the rest
of the substitution, rather than the value of parameter itself. This is known as indirect
expansion. The exception to this is the expansion of ${!prefix*} described below.

In each of the cases below, word is subject to tilde expansion, parameter expansion,
command substitution, and arithmetic expansion.

When not performing substring expansion, Bash tests for a parameter that is unset or
null; omitting the colon results in a test only for a parameter that is unset. Put another
way, if the colon is included, the operator tests for both existence and that the value is not
null; if the colon is omitted, the operator tests only for existence.

${parameter:−word}
If parameter is unset or null, the expansion of word is substituted. Otherwise,
the value of parameter is substituted.

${parameter:=word}
If parameter is unset or null, the expansion of word is assigned to parameter.
The value of parameter is then substituted. Positional parameters and special
parameters may not be assigned to in this way.

${parameter:?word}
If parameter is null or unset, the expansion of word (or a message to that effect
if word is not present) is written to the standard error and the shell, if it is not
interactive, exits. Otherwise, the value of parameter is substituted.

${parameter:+word}
If parameter is null or unset, nothing is substituted, otherwise the expansion
of word is substituted.

18 Bash Reference Manual

${parameter:offset}
${parameter:offset:length}

Expands to up to length characters of parameter starting at the character
specified by offset. If length is omitted, expands to the substring of parameter
starting at the character specified by offset. length and offset are arithmetic
expressions (see Section 6.5 [Shell Arithmetic], page 66). This is referred to as
Substring Expansion.

length must evaluate to a number greater than or equal to zero. If offset eval-
uates to a number less than zero, the value is used as an offset from the end
of the value of parameter. If parameter is ‘@’, the result is length positional
parameters beginning at offset. If parameter is an array name indexed by ‘@’
or ‘*’, the result is the length members of the array beginning with ${parame-
ter[offset]}. Substring indexing is zero-based unless the positional parameters
are used, in which case the indexing starts at 1.

${!prefix*}
Expands to the names of variables whose names begin with prefix, separated
by the first character of the IFS special variable.

${#parameter}
The length in characters of the expanded value of parameter is substituted.
If parameter is ‘*’ or ‘@’, the value substituted is the number of positional
parameters. If parameter is an array name subscripted by ‘*’ or ‘@’, the value
substituted is the number of elements in the array.

${parameter#word}
${parameter##word}

The word is expanded to produce a pattern just as in filename expansion (see
Section 3.5.8 [Filename Expansion], page 20). If the pattern matches the be-
ginning of the expanded value of parameter, then the result of the expansion is
the expanded value of parameter with the shortest matching pattern (the ‘#’
case) or the longest matching pattern (the ‘##’ case) deleted. If parameter is ‘@’
or ‘*’, the pattern removal operation is applied to each positional parameter in
turn, and the expansion is the resultant list. If parameter is an array variable
subscripted with ‘@’ or ‘*’, the pattern removal operation is applied to each
member of the array in turn, and the expansion is the resultant list.

${parameter%word}
${parameter%%word}

The word is expanded to produce a pattern just as in filename expansion. If
the pattern matches a trailing portion of the expanded value of parameter,
then the result of the expansion is the value of parameter with the shortest
matching pattern (the ‘%’ case) or the longest matching pattern (the ‘%%’ case)
deleted. If parameter is ‘@’ or ‘*’, the pattern removal operation is applied to
each positional parameter in turn, and the expansion is the resultant list. If
parameter is an array variable subscripted with ‘@’ or ‘*’, the pattern removal
operation is applied to each member of the array in turn, and the expansion is
the resultant list.

Chapter 3: Basic Shell Features 19

${parameter/pattern/string}
${parameter//pattern/string}

The pattern is expanded to produce a pattern just as in filename expansion.
Parameter is expanded and the longest match of pattern against its value is
replaced with string. In the first form, only the first match is replaced. The
second form causes all matches of pattern to be replaced with string. If pattern
begins with ‘#’, it must match at the beginning of the expanded value of pa-
rameter. If pattern begins with ‘%’, it must match at the end of the expanded
value of parameter. If string is null, matches of pattern are deleted and the /
following pattern may be omitted. If parameter is ‘@’ or ‘*’, the substitution
operation is applied to each positional parameter in turn, and the expansion is
the resultant list. If parameter is an array variable subscripted with ‘@’ or ‘*’,
the substitution operation is applied to each member of the array in turn, and
the expansion is the resultant list.

3.5.4 Command Substitution

Command substitution allows the output of a command to replace the command itself.
Command substitution occurs when a command is enclosed as follows:

$(command)

or

‘command‘

Bash performs the expansion by executing command and replacing the command sub-
stitution with the standard output of the command, with any trailing newlines deleted.
Embedded newlines are not deleted, but they may be removed during word splitting. The
command substitution $(cat file) can be replaced by the equivalent but faster $(< file).

When the old-style backquote form of substitution is used, backslash retains its literal
meaning except when followed by ‘$’, ‘‘’, or ‘\’. The first backquote not preceded by a
backslash terminates the command substitution. When using the $(command) form, all
characters between the parentheses make up the command; none are treated specially.

Command substitutions may be nested. To nest when using the backquoted form, escape
the inner backquotes with backslashes.

If the substitution appears within double quotes, word splitting and filename expansion
are not performed on the results.

3.5.5 Arithmetic Expansion

Arithmetic expansion allows the evaluation of an arithmetic expression and the substi-
tution of the result. The format for arithmetic expansion is:

$((expression))

The expression is treated as if it were within double quotes, but a double quote inside
the parentheses is not treated specially. All tokens in the expression undergo parameter
expansion, command substitution, and quote removal. Arithmetic substitutions may be
nested.

20 Bash Reference Manual

The evaluation is performed according to the rules listed below (see Section 6.5 [Shell
Arithmetic], page 66). If the expression is invalid, Bash prints a message indicating failure
to the standard error and no substitution occurs.

3.5.6 Process Substitution

Process substitution is supported on systems that support named pipes (fifos) or the
‘/dev/fd’ method of naming open files. It takes the form of

<(list)

or
>(list)

The process list is run with its input or output connected to a fifo or some file in ‘/dev/fd’.
The name of this file is passed as an argument to the current command as the result of the
expansion. If the >(list) form is used, writing to the file will provide input for list. If the
<(list) form is used, the file passed as an argument should be read to obtain the output of
list. Note that no space may appear between the < or > and the left parenthesis, otherwise
the construct would be interpreted as a redirection.

When available, process substitution is performed simultaneously with parameter and
variable expansion, command substitution, and arithmetic expansion.

3.5.7 Word Splitting

The shell scans the results of parameter expansion, command substitution, and arith-
metic expansion that did not occur within double quotes for word splitting.

The shell treats each character of $IFS as a delimiter, and splits the results of the
other expansions into words on these characters. If IFS is unset, or its value is exactly
<space><tab><newline>, the default, then any sequence of IFS characters serves to delimit
words. If IFS has a value other than the default, then sequences of the whitespace characters
space and tab are ignored at the beginning and end of the word, as long as the whitespace
character is in the value of IFS (an IFS whitespace character). Any character in IFS that
is not IFS whitespace, along with any adjacent IFS whitespace characters, delimits a field.
A sequence of IFS whitespace characters is also treated as a delimiter. If the value of IFS
is null, no word splitting occurs.

Explicit null arguments ("" or ’’) are retained. Unquoted implicit null arguments,
resulting from the expansion of parameters that have no values, are removed. If a parameter
with no value is expanded within double quotes, a null argument results and is retained.

Note that if no expansion occurs, no splitting is performed.

3.5.8 Filename Expansion

After word splitting, unless the ‘-f’ option has been set (see Section 4.3 [The Set Builtin],
page 46), Bash scans each word for the characters ‘*’, ‘?’, and ‘[’. If one of these characters
appears, then the word is regarded as a pattern, and replaced with an alphabetically sorted
list of file names matching the pattern. If no matching file names are found, and the shell
option nullglob is disabled, the word is left unchanged. If the nullglob option is set, and

Chapter 3: Basic Shell Features 21

no matches are found, the word is removed. If the shell option nocaseglob is enabled, the
match is performed without regard to the case of alphabetic characters.

When a pattern is used for filename generation, the character ‘.’ at the start of a filename
or immediately following a slash must be matched explicitly, unless the shell option dotglob
is set. When matching a file name, the slash character must always be matched explicitly.
In other cases, the ‘.’ character is not treated specially.

See the description of shopt in Section 4.2 [Bash Builtins], page 36, for a description of
the nocaseglob, nullglob, and dotglob options.

The GLOBIGNORE shell variable may be used to restrict the set of filenames matching
a pattern. If GLOBIGNORE is set, each matching filename that also matches one of the
patterns in GLOBIGNORE is removed from the list of matches. The filenames ‘.’ and ‘..’ are
always ignored, even when GLOBIGNORE is set. However, setting GLOBIGNORE has the effect
of enabling the dotglob shell option, so all other filenames beginning with a ‘.’ will match.
To get the old behavior of ignoring filenames beginning with a ‘.’, make ‘.*’ one of the
patterns in GLOBIGNORE. The dotglob option is disabled when GLOBIGNORE is unset.

3.5.8.1 Pattern Matching

Any character that appears in a pattern, other than the special pattern characters de-
scribed below, matches itself. The nul character may not occur in a pattern. The special
pattern characters must be quoted if they are to be matched literally.

The special pattern characters have the following meanings:

* Matches any string, including the null string.

? Matches any single character.

[...] Matches any one of the enclosed characters. A pair of characters separated by a
hyphen denotes a range expression; any character that sorts between those two
characters, inclusive, using the current locale’s collating sequence and character
set, is matched. If the first character following the ‘[’ is a ‘!’ or a ‘^’ then any
character not enclosed is matched. A ‘−’ may be matched by including it as the
first or last character in the set. A ‘]’ may be matched by including it as the
first character in the set. The sorting order of characters in range expressions is
determined by the current locale and the value of the LC_COLLATE shell variable,
if set.
For example, in the default C locale, ‘[a-dx-z]’ is equivalent to ‘[abcdxyz]’.
Many locales sort characters in dictionary order, and in these locales
‘[a-dx-z]’ is typically not equivalent to ‘[abcdxyz]’; it might be equivalent
to ‘[aBbCcDdxXyYz]’, for example. To obtain the traditional interpretation of
ranges in bracket expressions, you can force the use of the C locale by setting
the LC_COLLATE or LC_ALL environment variable to the value ‘C’.
Within ‘[’ and ‘]’, character classes can be specified using the syntax [:class:],
where class is one of the following classes defined in the posix 1003.2 standard:

alnum alpha ascii blank cntrl digit graph lower
print punct space upper xdigit

A character class matches any character belonging to that class.

22 Bash Reference Manual

Within ‘[’ and ‘]’, an equivalence class can be specified using the syntax [=c=],
which matches all characters with the same collation weight (as defined by the
current locale) as the character c.
Within ‘[’ and ‘]’, the syntax [.symbol.] matches the collating symbol symbol.

If the extglob shell option is enabled using the shopt builtin, several extended pattern
matching operators are recognized. In the following description, a pattern-list is a list of
one or more patterns separated by a ‘|’. Composite patterns may be formed using one or
more of the following sub-patterns:

?(pattern-list)
Matches zero or one occurrence of the given patterns.

*(pattern-list)
Matches zero or more occurrences of the given patterns.

+(pattern-list)
Matches one or more occurrences of the given patterns.

@(pattern-list)
Matches exactly one of the given patterns.

!(pattern-list)
Matches anything except one of the given patterns.

3.5.9 Quote Removal

After the preceding expansions, all unquoted occurrences of the characters ‘\’, ‘’’, and
‘"’ that did not result from one of the above expansions are removed.

3.6 Redirections

Before a command is executed, its input and output may be redirected using a special
notation interpreted by the shell. Redirection may also be used to open and close files for
the current shell execution environment. The following redirection operators may precede
or appear anywhere within a simple command or may follow a command. Redirections are
processed in the order they appear, from left to right.

In the following descriptions, if the file descriptor number is omitted, and the first char-
acter of the redirection operator is ‘<’, the redirection refers to the standard input (file
descriptor 0). If the first character of the redirection operator is ‘>’, the redirection refers
to the standard output (file descriptor 1).

The word following the redirection operator in the following descriptions, unless other-
wise noted, is subjected to brace expansion, tilde expansion, parameter expansion, command
substitution, arithmetic expansion, quote removal, filename expansion, and word splitting.
If it expands to more than one word, Bash reports an error.

Note that the order of redirections is significant. For example, the command
ls > dirlist 2>&1

directs both standard output (file descriptor 1) and standard error (file descriptor 2) to the
file dirlist, while the command

Chapter 3: Basic Shell Features 23

ls 2>&1 > dirlist

directs only the standard output to file dirlist, because the standard error was duplicated
as standard output before the standard output was redirected to dirlist.

Bash handles several filenames specially when they are used in redirections, as described
in the following table:

/dev/fd/fd
If fd is a valid integer, file descriptor fd is duplicated.

/dev/stdin
File descriptor 0 is duplicated.

/dev/stdout
File descriptor 1 is duplicated.

/dev/stderr
File descriptor 2 is duplicated.

/dev/tcp/host/port
If host is a valid hostname or Internet address, and port is an integer port
number or service name, Bash attempts to open a TCP connection to the
corresponding socket.

/dev/udp/host/port
If host is a valid hostname or Internet address, and port is an integer port
number or service name, Bash attempts to open a UDP connection to the
corresponding socket.

A failure to open or create a file causes the redirection to fail.

3.6.1 Redirecting Input

Redirection of input causes the file whose name results from the expansion of word to
be opened for reading on file descriptor n, or the standard input (file descriptor 0) if n is
not specified.

The general format for redirecting input is:
[n]<word

3.6.2 Redirecting Output

Redirection of output causes the file whose name results from the expansion of word to
be opened for writing on file descriptor n, or the standard output (file descriptor 1) if n is
not specified. If the file does not exist it is created; if it does exist it is truncated to zero
size.

The general format for redirecting output is:
[n]>[|]word

If the redirection operator is ‘>’, and the noclobber option to the set builtin has been
enabled, the redirection will fail if the file whose name results from the expansion of word
exists and is a regular file. If the redirection operator is ‘>|’, or the redirection operator is
‘>’ and the noclobber option is not enabled, the redirection is attempted even if the file
named by word exists.

24 Bash Reference Manual

3.6.3 Appending Redirected Output

Redirection of output in this fashion causes the file whose name results from the expan-
sion of word to be opened for appending on file descriptor n, or the standard output (file
descriptor 1) if n is not specified. If the file does not exist it is created.

The general format for appending output is:
[n]>>word

3.6.4 Redirecting Standard Output and Standard Error

Bash allows both the standard output (file descriptor 1) and the standard error output
(file descriptor 2) to be redirected to the file whose name is the expansion of word with this
construct.

There are two formats for redirecting standard output and standard error:
&>word

and
>&word

Of the two forms, the first is preferred. This is semantically equivalent to
>word 2>&1

3.6.5 Here Documents

This type of redirection instructs the shell to read input from the current source until a
line containing only word (with no trailing blanks) is seen. All of the lines read up to that
point are then used as the standard input for a command.

The format of here-documents is as follows:
<<[−]word

here-document
delimiter

No parameter expansion, command substitution, arithmetic expansion, or filename ex-
pansion is performed on word. If any characters in word are quoted, the delimiter is the
result of quote removal on word, and the lines in the here-document are not expanded.
If word is unquoted, all lines of the here-document are subjected to parameter expansion,
command substitution, and arithmetic expansion. In the latter case, the character sequence
\newline is ignored, and ‘\’ must be used to quote the characters ‘\’, ‘$’, and ‘‘’.

If the redirection operator is ‘<<-’, then all leading tab characters are stripped from input
lines and the line containing delimiter. This allows here-documents within shell scripts to
be indented in a natural fashion.

3.6.6 Duplicating File Descriptors

The redirection operator
[n]<&word

is used to duplicate input file descriptors. If word expands to one or more digits, the file
descriptor denoted by n is made to be a copy of that file descriptor. If the digits in word

Chapter 3: Basic Shell Features 25

do not specify a file descriptor open for input, a redirection error occurs. If word evaluates
to ‘-’, file descriptor n is closed. If n is not specified, the standard input (file descriptor 0)
is used.

The operator

[n]>&word

is used similarly to duplicate output file descriptors. If n is not specified, the standard
output (file descriptor 1) is used. If the digits in word do not specify a file descriptor open
for output, a redirection error occurs. As a special case, if n is omitted, and word does
not expand to one or more digits, the standard output and standard error are redirected as
described previously.

3.6.7 Opening File Descriptors for Reading and Writing

The redirection operator

[n]<>word

causes the file whose name is the expansion of word to be opened for both reading and
writing on file descriptor n, or on file descriptor 0 if n is not specified. If the file does not
exist, it is created.

3.7 Executing Commands

3.7.1 Simple Command Expansion

When a simple command is executed, the shell performs the following expansions, as-
signments, and redirections, from left to right.

1. The words that the parser has marked as variable assignments (those preceding the
command name) and redirections are saved for later processing.

2. The words that are not variable assignments or redirections are expanded (see Sec-
tion 3.5 [Shell Expansions], page 15). If any words remain after expansion, the first
word is taken to be the name of the command and the remaining words are the argu-
ments.

3. Redirections are performed as described above (see Section 3.6 [Redirections], page 22).

4. The text after the ‘=’ in each variable assignment undergoes tilde expansion, parameter
expansion, command substitution, arithmetic expansion, and quote removal before
being assigned to the variable.

If no command name results, the variable assignments affect the current shell environ-
ment. Otherwise, the variables are added to the environment of the executed command and
do not affect the current shell environment. If any of the assignments attempts to assign
a value to a readonly variable, an error occurs, and the command exits with a non-zero
status.

If no command name results, redirections are performed, but do not affect the current
shell environment. A redirection error causes the command to exit with a non-zero status.

26 Bash Reference Manual

If there is a command name left after expansion, execution proceeds as described below.
Otherwise, the command exits. If one of the expansions contained a command substitu-
tion, the exit status of the command is the exit status of the last command substitution
performed. If there were no command substitutions, the command exits with a status of
zero.

3.7.2 Command Search and Execution

After a command has been split into words, if it results in a simple command and an
optional list of arguments, the following actions are taken.
1. If the command name contains no slashes, the shell attempts to locate it. If there exists

a shell function by that name, that function is invoked as described in Section 3.3 [Shell
Functions], page 12.

2. If the name does not match a function, the shell searches for it in the list of shell
builtins. If a match is found, that builtin is invoked.

3. If the name is neither a shell function nor a builtin, and contains no slashes, Bash
searches each element of $PATH for a directory containing an executable file by that
name. Bash uses a hash table to remember the full pathnames of executable files to
avoid multiple PATH searches (see the description of hash in Section 4.1 [Bourne Shell
Builtins], page 31). A full search of the directories in $PATH is performed only if the
command is not found in the hash table. If the search is unsuccessful, the shell prints
an error message and returns an exit status of 127.

4. If the search is successful, or if the command name contains one or more slashes, the
shell executes the named program in a separate execution environment. Argument 0
is set to the name given, and the remaining arguments to the command are set to the
arguments supplied, if any.

5. If this execution fails because the file is not in executable format, and the file is not
a directory, it is assumed to be a shell script and the shell executes it as described in
Section 3.8 [Shell Scripts], page 29.

6. If the command was not begun asynchronously, the shell waits for the command to
complete and collects its exit status.

3.7.3 Command Execution Environment

The shell has an execution environment, which consists of the following:
• open files inherited by the shell at invocation, as modified by redirections supplied to

the exec builtin
• the current working directory as set by cd, pushd, or popd, or inherited by the shell at

invocation
• the file creation mode mask as set by umask or inherited from the shell’s parent
• current traps set by trap

• shell parameters that are set by variable assignment or with set or inherited from the
shell’s parent in the environment

• shell functions defined during execution or inherited from the shell’s parent in the
environment

Chapter 3: Basic Shell Features 27

• options enabled at invocation (either by default or with command-line arguments) or
by set

• options enabled by shopt

• shell aliases defined with alias (see Section 6.6 [Aliases], page 67)
• various process ids, including those of background jobs (see Section 3.2.3 [Lists],

page 8), the value of $$, and the value of $PPID

When a simple command other than a builtin or shell function is to be executed, it is
invoked in a separate execution environment that consists of the following. Unless otherwise
noted, the values are inherited from the shell.
• the shell’s open files, plus any modifications and additions specified by redirections to

the command
• the current working directory
• the file creation mode mask
• shell variables marked for export, along with variables exported for the command,

passed in the environment (see Section 3.7.4 [Environment], page 27)
• traps caught by the shell are reset to the values inherited from the shell’s parent, and

traps ignored by the shell are ignored

A command invoked in this separate environment cannot affect the shell’s execution
environment.

Command substitution and asynchronous commands are invoked in a subshell environ-
ment that is a duplicate of the shell environment, except that traps caught by the shell are
reset to the values that the shell inherited from its parent at invocation. Builtin commands
that are invoked as part of a pipeline are also executed in a subshell environment. Changes
made to the subshell environment cannot affect the shell’s execution environment.

If a command is followed by a ‘&’ and job control is not active, the default standard
input for the command is the empty file ‘/dev/null’. Otherwise, the invoked command
inherits the file descriptors of the calling shell as modified by redirections.

3.7.4 Environment

When a program is invoked it is given an array of strings called the environment. This
is a list of name-value pairs, of the form name=value.

Bash provides several ways to manipulate the environment. On invocation, the shell
scans its own environment and creates a parameter for each name found, automatically
marking it for export to child processes. Executed commands inherit the environment. The
export and ‘declare -x’ commands allow parameters and functions to be added to and
deleted from the environment. If the value of a parameter in the environment is modified, the
new value becomes part of the environment, replacing the old. The environment inherited
by any executed command consists of the shell’s initial environment, whose values may be
modified in the shell, less any pairs removed by the unset and ‘export -n’ commands, plus
any additions via the export and ‘declare -x’ commands.

The environment for any simple command or function may be augmented temporarily
by prefixing it with parameter assignments, as described in Section 3.4 [Shell Parameters],
page 13. These assignment statements affect only the environment seen by that command.

28 Bash Reference Manual

If the ‘-k’ option is set (see Section 4.3 [The Set Builtin], page 46), then all parameter
assignments are placed in the environment for a command, not just those that precede the
command name.

When Bash invokes an external command, the variable ‘$_’ is set to the full path name
of the command and passed to that command in its environment.

3.7.5 Exit Status

For the shell’s purposes, a command which exits with a zero exit status has succeeded.
A non-zero exit status indicates failure. This seemingly counter-intuitive scheme is used so
there is one well-defined way to indicate success and a variety of ways to indicate various
failure modes. When a command terminates on a fatal signal whose number is N, Bash
uses the value 128+N as the exit status.

If a command is not found, the child process created to execute it returns a status of
127. If a command is found but is not executable, the return status is 126.

If a command fails because of an error during expansion or redirection, the exit status
is greater than zero.

The exit status is used by the Bash conditional commands (see Section 3.2.5 [Conditional
Constructs], page 10) and some of the list constructs (see Section 3.2.3 [Lists], page 8).

All of the Bash builtins return an exit status of zero if they succeed and a non-zero
status on failure, so they may be used by the conditional and list constructs. All builtins
return an exit status of 2 to indicate incorrect usage.

3.7.6 Signals

When Bash is interactive, in the absence of any traps, it ignores SIGTERM (so that ‘kill
0’ does not kill an interactive shell), and SIGINT is caught and handled (so that the wait
builtin is interruptible). When Bash receives a SIGINT, it breaks out of any executing loops.
In all cases, Bash ignores SIGQUIT. If job control is in effect (see Chapter 7 [Job Control],
page 75), Bash ignores SIGTTIN, SIGTTOU, and SIGTSTP.

Commands started by Bash have signal handlers set to the values inherited by the
shell from its parent. When job control is not in effect, asynchronous commands ignore
SIGINT and SIGQUIT as well. Commands run as a result of command substitution ignore
the keyboard-generated job control signals SIGTTIN, SIGTTOU, and SIGTSTP.

The shell exits by default upon receipt of a SIGHUP. Before exiting, an interactive shell
resends the SIGHUP to all jobs, running or stopped. Stopped jobs are sent SIGCONT to
ensure that they receive the SIGHUP. To prevent the shell from sending the SIGHUP signal
to a particular job, it should be removed from the jobs table with the disown builtin (see
Section 7.2 [Job Control Builtins], page 76) or marked to not receive SIGHUP using disown
-h.

If the huponexit shell option has been set with shopt (see Section 4.2 [Bash Builtins],
page 36), Bash sends a SIGHUP to all jobs when an interactive login shell exits.

When Bash receives a signal for which a trap has been set while waiting for a command
to complete, the trap will not be executed until the command completes. When Bash is
waiting for an asynchronous command via the wait builtin, the reception of a signal for

Chapter 3: Basic Shell Features 29

which a trap has been set will cause the wait builtin to return immediately with an exit
status greater than 128, immediately after which the trap is executed.

3.8 Shell Scripts

A shell script is a text file containing shell commands. When such a file is used as
the first non-option argument when invoking Bash, and neither the ‘-c’ nor ‘-s’ option is
supplied (see Section 6.1 [Invoking Bash], page 59), Bash reads and executes commands
from the file, then exits. This mode of operation creates a non-interactive shell. The shell
first searches for the file in the current directory, and looks in the directories in $PATH if not
found there.

When Bash runs a shell script, it sets the special parameter 0 to the name of the file,
rather than the name of the shell, and the positional parameters are set to the remain-
ing arguments, if any are given. If no additional arguments are supplied, the positional
parameters are unset.

A shell script may be made executable by using the chmod command to turn on the
execute bit. When Bash finds such a file while searching the $PATH for a command, it
spawns a subshell to execute it. In other words, executing

filename arguments

is equivalent to executing
bash filename arguments

if filename is an executable shell script. This subshell reinitializes itself, so that the effect
is as if a new shell had been invoked to interpret the script, with the exception that the
locations of commands remembered by the parent (see the description of hash in Section 4.1
[Bourne Shell Builtins], page 31) are retained by the child.

Most versions of Unix make this a part of the operating system’s command execution
mechanism. If the first line of a script begins with the two characters ‘#!’, the remainder
of the line specifies an interpreter for the program. Thus, you can specify Bash, awk, Perl,
or some other interpreter and write the rest of the script file in that language.

The arguments to the interpreter consist of a single optional argument following the
interpreter name on the first line of the script file, followed by the name of the script file,
followed by the rest of the arguments. Bash will perform this action on operating systems
that do not handle it themselves. Note that some older versions of Unix limit the interpreter
name and argument to a maximum of 32 characters.

Bash scripts often begin with #! /bin/bash (assuming that Bash has been installed in
‘/bin’), since this ensures that Bash will be used to interpret the script, even if it is executed
under another shell.

30 Bash Reference Manual

Chapter 4: Shell Builtin Commands 31

4 Shell Builtin Commands

Builtin commands are contained within the shell itself. When the name of a builtin com-
mand is used as the first word of a simple command (see Section 3.2.1 [Simple Commands],
page 8), the shell executes the command directly, without invoking another program. Builtin
commands are necessary to implement functionality impossible or inconvenient to obtain
with separate utilities.

This section briefly the builtins which Bash inherits from the Bourne Shell, as well as
the builtin commands which are unique to or have been extended in Bash.

Several builtin commands are described in other chapters: builtin commands which
provide the Bash interface to the job control facilities (see Section 7.2 [Job Control Builtins],
page 76), the directory stack (see Section 6.8.1 [Directory Stack Builtins], page 69), the
command history (see Section 9.2 [Bash History Builtins], page 103), and the programmable
completion facilities (see Section 8.7 [Programmable Completion Builtins], page 99).

Many of the builtins have been extended by posix or Bash.

4.1 Bourne Shell Builtins

The following shell builtin commands are inherited from the Bourne Shell. These com-
mands are implemented as specified by the posix 1003.2 standard.

: (a colon)
: [arguments]

Do nothing beyond expanding arguments and performing redirections. The
return status is zero.

. (a period)
. filename [arguments]

Read and execute commands from the filename argument in the current shell
context. If filename does not contain a slash, the PATH variable is used to find
filename. When Bash is not in posix mode, the current directory is searched
if filename is not found in $PATH. If any arguments are supplied, they become
the positional parameters when filename is executed. Otherwise the positional
parameters are unchanged. The return status is the exit status of the last
command executed, or zero if no commands are executed. If filename is not
found, or cannot be read, the return status is non-zero. This builtin is equivalent
to source.

break

break [n]

Exit from a for, while, until, or select loop. If n is supplied, the nth
enclosing loop is exited. n must be greater than or equal to 1. The return
status is zero unless n is not greater than or equal to 1.

cd

cd [-LP] [directory]

Change the current working directory to directory. If directory is not given,
the value of the HOME shell variable is used. If the shell variable CDPATH exists,

32 Bash Reference Manual

it is used as a search path. If directory begins with a slash, CDPATH is not
used. The ‘-P’ option means to not follow symbolic links; symbolic links are
followed by default or with the ‘-L’ option. If directory is ‘-’, it is equivalent
to $OLDPWD. The return status is zero if the directory is successfully changed,
non-zero otherwise.

continue

continue [n]

Resume the next iteration of an enclosing for, while, until, or select loop.
If n is supplied, the execution of the nth enclosing loop is resumed. n must be
greater than or equal to 1. The return status is zero unless n is not greater
than or equal to 1.

eval

eval [arguments]

The arguments are concatenated together into a single command, which is then
read and executed, and its exit status returned as the exit status of eval. If
there are no arguments or only empty arguments, the return status is zero.

exec

exec [-cl] [-a name] [command [arguments]]

If command is supplied, it replaces the shell without creating a new process. If
the ‘-l’ option is supplied, the shell places a dash at the beginning of the zeroth
arg passed to command. This is what the login program does. The ‘-c’ option
causes command to be executed with an empty environment. If ‘-a’ is supplied,
the shell passes name as the zeroth argument to command. If no command is
specified, redirections may be used to affect the current shell environment. If
there are no redirection errors, the return status is zero; otherwise the return
status is non-zero.

exit

exit [n]

Exit the shell, returning a status of n to the shell’s parent. If n is omitted, the
exit status is that of the last command executed. Any trap on EXIT is executed
before the shell terminates.

export

export [-fn] [-p] [name[=value]]

Mark each name to be passed to child processes in the environment. If the
‘-f’ option is supplied, the names refer to shell functions; otherwise the names
refer to shell variables. The ‘-n’ option means to no longer mark each name
for export. If no names are supplied, or if the ‘-p’ option is given, a list of
exported names is displayed. The ‘-p’ option displays output in a form that
may be reused as input. The return status is zero unless an invalid option is
supplied, one of the names is not a valid shell variable name, or ‘-f’ is supplied
with a name that is not a shell function.

getopts

Chapter 4: Shell Builtin Commands 33

getopts optstring name [args]

getopts is used by shell scripts to parse positional parameters. optstring con-
tains the option characters to be recognized; if a character is followed by a
colon, the option is expected to have an argument, which should be separated
from it by white space. The colon (‘:’) and question mark (‘?’) may not be
used as option characters. Each time it is invoked, getopts places the next
option in the shell variable name, initializing name if it does not exist, and the
index of the next argument to be processed into the variable OPTIND. OPTIND
is initialized to 1 each time the shell or a shell script is invoked. When an
option requires an argument, getopts places that argument into the variable
OPTARG. The shell does not reset OPTIND automatically; it must be manually
reset between multiple calls to getopts within the same shell invocation if a
new set of parameters is to be used.
When the end of options is encountered, getopts exits with a return value
greater than zero. OPTIND is set to the index of the first non-option argument,
and name is set to ‘?’.
getopts normally parses the positional parameters, but if more arguments are
given in args, getopts parses those instead.
getopts can report errors in two ways. If the first character of optstring is a
colon, silent error reporting is used. In normal operation diagnostic messages
are printed when invalid options or missing option arguments are encountered.
If the variable OPTERR is set to 0, no error messages will be displayed, even if
the first character of optstring is not a colon.
If an invalid option is seen, getopts places ‘?’ into name and, if not silent,
prints an error message and unsets OPTARG. If getopts is silent, the option
character found is placed in OPTARG and no diagnostic message is printed.
If a required argument is not found, and getopts is not silent, a question mark
(‘?’) is placed in name, OPTARG is unset, and a diagnostic message is printed. If
getopts is silent, then a colon (‘:’) is placed in name and OPTARG is set to the
option character found.

hash

hash [-r] [-p filename] [-t] [name]

Remember the full pathnames of commands specified as name arguments, so
they need not be searched for on subsequent invocations. The commands are
found by searching through the directories listed in $PATH. The ‘-p’ option
inhibits the path search, and filename is used as the location of name. The ‘-r’
option causes the shell to forget all remembered locations. If the ‘-t’ option
is supplied, the full pathname to which each name corresponds is printed. If
multiple name arguments are supplied with ‘-t’ the name is printed before the
hashed full pathname. If no arguments are given, information about remem-
bered commands is printed. The return status is zero unless a name is not
found or an invalid option is supplied.

pwd

pwd [-LP]

34 Bash Reference Manual

Print the absolute pathname of the current working directory. If the ‘-P’ option
is supplied, the pathname printed will not contain symbolic links. If the ‘-L’
option is supplied, the pathname printed may contain symbolic links. The
return status is zero unless an error is encountered while determining the name
of the current directory or an invalid option is supplied.

readonly

readonly [-apf] [name] ...

Mark each name as readonly. The values of these names may not be changed
by subsequent assignment. If the ‘-f’ option is supplied, each name refers to
a shell function. The ‘-a’ option means each name refers to an array variable.
If no name arguments are given, or if the ‘-p’ option is supplied, a list of all
readonly names is printed. The ‘-p’ option causes output to be displayed in a
format that may be reused as input. The return status is zero unless an invalid
option is supplied, one of the name arguments is not a valid shell variable or
function name, or the ‘-f’ option is supplied with a name that is not a shell
function.

return

return [n]

Cause a shell function to exit with the return value n. If n is not supplied, the
return value is the exit status of the last command executed in the function.
This may also be used to terminate execution of a script being executed with the
. (or source) builtin, returning either n or the exit status of the last command
executed within the script as the exit status of the script. The return status is
non-zero if return is used outside a function and not during the execution of a
script by . or source.

shift

shift [n]

Shift the positional parameters to the left by n. The positional parameters
from n+1 . . . $# are renamed to $1 . . . $#-n+1. Parameters represented by the
numbers $# to n+1 are unset. n must be a non-negative number less than or
equal to $#. If n is zero or greater than $#, the positional parameters are not
changed. If n is not supplied, it is assumed to be 1. The return status is zero
unless n is greater than $# or less than zero, non-zero otherwise.

test
[Evaluate a conditional expression expr. Each operator and operand must be a

separate argument. Expressions are composed of the primaries described below
in Section 6.4 [Bash Conditional Expressions], page 64.
When the [form is used, the last argument to the command must be a].
Expressions may be combined using the following operators, listed in decreasing
order of precedence.

! expr True if expr is false.

(expr) Returns the value of expr. This may be used to override the normal
precedence of operators.

Chapter 4: Shell Builtin Commands 35

expr1 -a expr2
True if both expr1 and expr2 are true.

expr1 -o expr2
True if either expr1 or expr2 is true.

The test and [builtins evaluate conditional expressions using a set of rules
based on the number of arguments.

0 arguments
The expression is false.

1 argument
The expression is true if and only if the argument is not null.

2 arguments
If the first argument is ‘!’, the expression is true if and only if the
second argument is null. If the first argument is one of the unary
conditional operators (see Section 6.4 [Bash Conditional Expres-
sions], page 64), the expression is true if the unary test is true. If
the first argument is not a valid unary operator, the expression is
false.

3 arguments
If the second argument is one of the binary conditional operators
(see Section 6.4 [Bash Conditional Expressions], page 64), the result
of the expression is the result of the binary test using the first
and third arguments as operands. If the first argument is ‘!’, the
value is the negation of the two-argument test using the second and
third arguments. If the first argument is exactly ‘(’ and the third
argument is exactly ‘)’, the result is the one-argument test of the
second argument. Otherwise, the expression is false. The ‘-a’ and
‘-o’ operators are considered binary operators in this case.

4 arguments
If the first argument is ‘!’, the result is the negation of the three-
argument expression composed of the remaining arguments. Oth-
erwise, the expression is parsed and evaluated according to prece-
dence using the rules listed above.

5 or more arguments
The expression is parsed and evaluated according to precedence
using the rules listed above.

times

times

Print out the user and system times used by the shell and its children. The
return status is zero.

trap

trap [-lp] [arg] [sigspec ...]

36 Bash Reference Manual

The commands in arg are to be read and executed when the shell receives
signal sigspec. If arg is absent or equal to ‘-’, all specified signals are reset
to the values they had when the shell was started. If arg is the null string,
then the signal specified by each sigspec is ignored by the shell and commands
it invokes. If arg is not present and ‘-p’ has been supplied, the shell displays
the trap commands associated with each sigspec. If no arguments are supplied,
or only ‘-p’ is given, trap prints the list of commands associated with each
signal number in a form that may be reused as shell input. Each sigspec is
either a signal name such as SIGINT (with or without the SIG prefix) or a signal
number. If a sigspec is 0 or EXIT, arg is executed when the shell exits. If a
sigspec is DEBUG, the command arg is executed after every simple command.
If a sigspec is ERR, the command arg is executed whenever a simple command
has a non-zero exit status. The ERR trap is not executed if the failed command
is part of an until or while loop, part of an if statement, part of a && or
|| list, or if the command’s return status is being inverted using !. The ‘-l’
option causes the shell to print a list of signal names and their corresponding
numbers.
Signals ignored upon entry to the shell cannot be trapped or reset. Trapped
signals are reset to their original values in a child process when it is created.
The return status is zero unless a sigspec does not specify a valid signal.

umask

umask [-p] [-S] [mode]

Set the shell process’s file creation mask to mode. If mode begins with a digit,
it is interpreted as an octal number; if not, it is interpreted as a symbolic mode
mask similar to that accepted by the chmod command. If mode is omitted, the
current value of the mask is printed. If the ‘-S’ option is supplied without a
mode argument, the mask is printed in a symbolic format. If the ‘-p’ option
is supplied, and mode is omitted, the output is in a form that may be reused
as input. The return status is zero if the mode is successfully changed or if no
mode argument is supplied, and non-zero otherwise.
Note that when the mode is interpreted as an octal number, each number of
the umask is subtracted from 7. Thus, a umask of 022 results in permissions
of 755.

unset

unset [-fv] [name]

Each variable or function name is removed. If no options are supplied, or the
‘-v’ option is given, each name refers to a shell variable. If the ‘-f’ option is
given, the names refer to shell functions, and the function definition is removed.
Readonly variables and functions may not be unset. The return status is zero
unless a name does not exist or is readonly.

4.2 Bash Builtin Commands

This section describes builtin commands which are unique to or have been extended in
Bash. Some of these commands are specified in the posix 1003.2 standard.

Chapter 4: Shell Builtin Commands 37

alias

alias [-p] [name[=value] ...]

Without arguments or with the ‘-p’ option, alias prints the list of aliases
on the standard output in a form that allows them to be reused as input. If
arguments are supplied, an alias is defined for each name whose value is given.
If no value is given, the name and value of the alias is printed. Aliases are
described in Section 6.6 [Aliases], page 67.

bind

bind [-m keymap] [-lpsvPSV]
bind [-m keymap] [-q function] [-u function] [-r keyseq]
bind [-m keymap] -f filename
bind [-m keymap] -x keyseq:shell-command
bind [-m keymap] keyseq:function-name

Display current Readline (see Chapter 8 [Command Line Editing], page 79) key
and function bindings, or bind a key sequence to a Readline function or macro.
The binding syntax accepted is identical to that of a Readline initialization file
(see Section 8.3 [Readline Init File], page 82), but each binding must be passed
as a separate argument: e.g., ‘"\C-x\C-r":re-read-init-file’. Options, if
supplied, have the following meanings:

-m keymap
Use keymap as the keymap to be affected by the subsequent
bindings. Acceptable keymap names are emacs, emacs-standard,
emacs-meta, emacs-ctlx, vi, vi-move, vi-command, and
vi-insert. vi is equivalent to vi-command; emacs is equivalent
to emacs-standard.

-l List the names of all Readline functions.

-p Display Readline function names and bindings in such a way that
they can be used as input or in a Readline initialization file.

-P List current Readline function names and bindings.

-v Display Readline variable names and values in such a way that they
can be used as input or in a Readline initialization file.

-V List current Readline variable names and values.

-s Display Readline key sequences bound to macros and the strings
they output in such a way that they can be used as input or in a
Readline initialization file.

-S Display Readline key sequences bound to macros and the strings
they output.

-f filename
Read key bindings from filename.

-q function
Query about which keys invoke the named function.

38 Bash Reference Manual

-u function
Unbind all keys bound to the named function.

-r keyseq Remove any current binding for keyseq.

-x keyseq:shell-command
Cause shell-command to be executed whenever keyseq is entered.

The return status is zero unless an invalid option is supplied or an error occurs.

builtin

builtin [shell-builtin [args]]

Run a shell builtin, passing it args, and return its exit status. This is useful
when defining a shell function with the same name as a shell builtin, retaining
the functionality of the builtin within the function. The return status is non-
zero if shell-builtin is not a shell builtin command.

command

command [-pVv] command [arguments ...]

Runs command with arguments ignoring any shell function named command.
Only shell builtin commands or commands found by searching the PATH are
executed. If there is a shell function named ls, running ‘command ls’ within the
function will execute the external command ls instead of calling the function
recursively. The ‘-p’ option means to use a default value for PATH that is
guaranteed to find all of the standard utilities. The return status in this case
is 127 if command cannot be found or an error occurred, and the exit status of
command otherwise.
If either the ‘-V’ or ‘-v’ option is supplied, a description of command is printed.
The ‘-v’ option causes a single word indicating the command or file name used
to invoke command to be displayed; the ‘-V’ option produces a more verbose
description. In this case, the return status is zero if command is found, and
non-zero if not.

declare

declare [-afFrxi] [-p] [name[=value]]

Declare variables and give them attributes. If no names are given, then display
the values of variables instead.
The ‘-p’ option will display the attributes and values of each name. When ‘-p’
is used, additional options are ignored. The ‘-F’ option inhibits the display of
function definitions; only the function name and attributes are printed. ‘-F’
implies ‘-f’. The following options can be used to restrict output to variables
with the specified attributes or to give variables attributes:

-a Each name is an array variable (see Section 6.7 [Arrays], page 68).

-f Use function names only.

-i The variable is to be treated as an integer; arithmetic evaluation
(see Section 6.5 [Shell Arithmetic], page 66) is performed when the
variable is assigned a value.

Chapter 4: Shell Builtin Commands 39

-r Make names readonly. These names cannot then be assigned values
by subsequent assignment statements or unset.

-x Mark each name for export to subsequent commands via the envi-
ronment.

Using ‘+’ instead of ‘-’ turns off the attribute instead. When used in a function,
declare makes each name local, as with the local command.
The return status is zero unless an invalid option is encountered, an attempt
is made to define a function using ‘-f foo=bar’, an attempt is made to assign
a value to a readonly variable, an attempt is made to assign a value to an
array variable without using the compound assignment syntax (see Section 6.7
[Arrays], page 68), one of the names is not a valid shell variable name, an
attempt is made to turn off readonly status for a readonly variable, an attempt
is made to turn off array status for an array variable, or an attempt is made to
display a non-existent function with ‘-f’.

echo

echo [-neE] [arg ...]

Output the args, separated by spaces, terminated with a newline. The return
status is always 0. If ‘-n’ is specified, the trailing newline is suppressed. If the
‘-e’ option is given, interpretation of the following backslash-escaped characters
is enabled. The ‘-E’ option disables the interpretation of these escape charac-
ters, even on systems where they are interpreted by default. The xpg_echo
shell option may be used to dynamically determine whether or not echo ex-
pands these escape characters by default. echo interprets the following escape
sequences:

\a alert (bell)

\b backspace

\c suppress trailing newline

\e escape

\f form feed

\n new line

\r carriage return

\t horizontal tab

\v vertical tab

\\ backslash

\nnn the eight-bit character whose value is the octal value nnn (one to
three digits)

\xHH the eight-bit character whose value is the hexadecimal value HH
(one or two hex digits)

enable

40 Bash Reference Manual

enable [-n] [-p] [-f filename] [-ads] [name ...]

Enable and disable builtin shell commands. Disabling a builtin allows a disk
command which has the same name as a shell builtin to be executed without
specifying a full pathname, even though the shell normally searches for builtins
before disk commands. If ‘-n’ is used, the names become disabled. Otherwise
names are enabled. For example, to use the test binary found via $PATH
instead of the shell builtin version, type ‘enable -n test’.
If the ‘-p’ option is supplied, or no name arguments appear, a list of shell
builtins is printed. With no other arguments, the list consists of all enabled
shell builtins. The ‘-a’ option means to list each builtin with an indication of
whether or not it is enabled.
The ‘-f’ option means to load the new builtin command name from shared
object filename, on systems that support dynamic loading. The ‘-d’ option will
delete a builtin loaded with ‘-f’.
If there are no options, a list of the shell builtins is displayed. The ‘-s’ option
restricts enable to the posix special builtins. If ‘-s’ is used with ‘-f’, the new
builtin becomes a special builtin (see Section 4.4 [Special Builtins], page 49).
The return status is zero unless a name is not a shell builtin or there is an error
loading a new builtin from a shared object.

help

help [-s] [pattern]

Display helpful information about builtin commands. If pattern is specified,
help gives detailed help on all commands matching pattern, otherwise a list of
the builtins is printed. The ‘-s’ option restricts the information displayed to
a short usage synopsis. The return status is zero unless no command matches
pattern.

let

let expression [expression]

The let builtin allows arithmetic to be performed on shell variables. Each
expression is evaluated according to the rules given below in Section 6.5 [Shell
Arithmetic], page 66. If the last expression evaluates to 0, let returns 1;
otherwise 0 is returned.

local

local [option] name[=value]

For each argument, a local variable named name is created, and assigned value.
The option can be any of the options accepted by declare. local can only
be used within a function; it makes the variable name have a visible scope
restricted to that function and its children. The return status is zero unless
local is used outside a function, an invalid name is supplied, or name is a
readonly variable.

logout

logout [n]

Exit a login shell, returning a status of n to the shell’s parent.

Chapter 4: Shell Builtin Commands 41

printf

printf format [arguments]

Write the formatted arguments to the standard output under the control of the
format. The format is a character string which contains three types of objects:
plain characters, which are simply copied to standard output, character escape
sequences, which are converted and copied to the standard output, and format
specifications, each of which causes printing of the next successive argument.
In addition to the standard printf(1) formats, ‘%b’ causes printf to expand
backslash escape sequences in the corresponding argument, and ‘%q’ causes
printf to output the corresponding argument in a format that can be reused
as shell input.
The format is reused as necessary to consume all of the arguments. If the for-
mat requires more arguments than are supplied, the extra format specifications
behave as if a zero value or null string, as appropriate, had been supplied. The
return value is zero on success, non-zero on failure.

read

read [-ers] [-a aname] [-p prompt] [-t timeout] [-n nchars] [-d de-
lim] [name ...]

One line is read from the standard input, and the first word is assigned to
the first name, the second word to the second name, and so on, with leftover
words and their intervening separators assigned to the last name. If there are
fewer words read from the standard input than names, the remaining names are
assigned empty values. The characters in the value of the IFS variable are used
to split the line into words. The backslash character ‘\’ may be used to remove
any special meaning for the next character read and for line continuation. If no
names are supplied, the line read is assigned to the variable REPLY. The return
code is zero, unless end-of-file is encountered or read times out. Options, if
supplied, have the following meanings:

-a aname The words are assigned to sequential indices of the array variable
aname, starting at 0. All elements are removed from aname before
the assignment. Other name arguments are ignored.

-d delim The first character of delim is used to terminate the input line,
rather than newline.

-e Readline (see Chapter 8 [Command Line Editing], page 79) is used
to obtain the line.

-n nchars read returns after reading nchars characters rather than waiting
for a complete line of input.

-p prompt
Display prompt, without a trailing newline, before attempting to
read any input. The prompt is displayed only if input is coming
from a terminal.

-r If this option is given, backslash does not act as an escape character.
The backslash is considered to be part of the line. In particular, a
backslash-newline pair may not be used as a line continuation.

42 Bash Reference Manual

-s Silent mode. If input is coming from a terminal, characters are not
echoed.

-t timeout
Cause read to time out and return failure if a complete line of
input is not read within timeout seconds. This option has no effect
if read is not reading input from the terminal or a pipe.

shopt

shopt [-pqsu] [-o] [optname ...]

Toggle the values of variables controlling optional shell behavior. With no
options, or with the ‘-p’ option, a list of all settable options is displayed, with
an indication of whether or not each is set. The ‘-p’ option causes output to
be displayed in a form that may be reused as input. Other options have the
following meanings:

-s Enable (set) each optname.

-u Disable (unset) each optname.

-q Suppresses normal output; the return status indicates whether the
optname is set or unset. If multiple optname arguments are given
with ‘-q’, the return status is zero if all optnames are enabled;
non-zero otherwise.

-o Restricts the values of optname to be those defined for the ‘-o’
option to the set builtin (see Section 4.3 [The Set Builtin], page 46).

If either ‘-s’ or ‘-u’ is used with no optname arguments, the display is limited
to those options which are set or unset, respectively.
Unless otherwise noted, the shopt options are disabled (off) by default.
The return status when listing options is zero if all optnames are enabled, non-
zero otherwise. When setting or unsetting options, the return status is zero
unless an optname is not a valid shell option.
The list of shopt options is:

cdable_vars
If this is set, an argument to the cd builtin command that is not
a directory is assumed to be the name of a variable whose value is
the directory to change to.

cdspell If set, minor errors in the spelling of a directory component in a cd
command will be corrected. The errors checked for are transposed
characters, a missing character, and a character too many. If a
correction is found, the corrected path is printed, and the command
proceeds. This option is only used by interactive shells.

checkhash
If this is set, Bash checks that a command found in the hash table
exists before trying to execute it. If a hashed command no longer
exists, a normal path search is performed.

Chapter 4: Shell Builtin Commands 43

checkwinsize
If set, Bash checks the window size after each command and, if
necessary, updates the values of LINES and COLUMNS.

cmdhist If set, Bash attempts to save all lines of a multiple-line command
in the same history entry. This allows easy re-editing of multi-line
commands.

dotglob If set, Bash includes filenames beginning with a ‘.’ in the results of
filename expansion.

execfail If this is set, a non-interactive shell will not exit if it cannot execute
the file specified as an argument to the exec builtin command. An
interactive shell does not exit if exec fails.

expand_aliases
If set, aliases are expanded as described below under Aliases, Sec-
tion 6.6 [Aliases], page 67. This option is enabled by default for
interactive shells.

extglob If set, the extended pattern matching features described above (see
Section 3.5.8.1 [Pattern Matching], page 21) are enabled.

histappend
If set, the history list is appended to the file named by the value of
the HISTFILE variable when the shell exits, rather than overwriting
the file.

histreedit
If set, and Readline is being used, a user is given the opportunity
to re-edit a failed history substitution.

histverify
If set, and Readline is being used, the results of history substitu-
tion are not immediately passed to the shell parser. Instead, the
resulting line is loaded into the Readline editing buffer, allowing
further modification.

hostcomplete
If set, and Readline is being used, Bash will attempt to perform
hostname completion when a word containing a ‘@’ is being com-
pleted (see Section 8.4.6 [Commands For Completion], page 94).
This option is enabled by default.

huponexit
If set, Bash will send SIGHUP to all jobs when an interactive login
shell exits (see Section 3.7.6 [Signals], page 28).

interactive_comments
Allow a word beginning with ‘#’ to cause that word and all remain-
ing characters on that line to be ignored in an interactive shell.
This option is enabled by default.

44 Bash Reference Manual

lithist If enabled, and the cmdhist option is enabled, multi-line commands
are saved to the history with embedded newlines rather than using
semicolon separators where possible.

login_shell
The shell sets this option if it is started as a login shell (see Sec-
tion 6.1 [Invoking Bash], page 59). The value may not be changed.

mailwarn If set, and a file that Bash is checking for mail has been accessed
since the last time it was checked, the message "The mail in mail-
file has been read" is displayed.

no_empty_cmd_completion
If set, and Readline is being used, Bash will not attempt to search
the PATH for possible completions when completion is attempted on
an empty line.

nocaseglob
If set, Bash matches filenames in a case-insensitive fashion when
performing filename expansion.

nullglob If set, Bash allows filename patterns which match no files to expand
to a null string, rather than themselves.

progcomp If set, the programmable completion facilities (see Section 8.6 [Pro-
grammable Completion], page 98) are enabled. This option is en-
abled by default.

promptvars
If set, prompt strings undergo variable and parameter expansion
after being expanded (see Section 6.9 [Printing a Prompt], page 70).
This option is enabled by default.

restricted_shell
The shell sets this option if it is started in restricted mode (see
Section 6.10 [The Restricted Shell], page 71). The value may not
be changed. This is not reset when the startup files are executed,
allowing the startup files to discover whether or not a shell is re-
stricted.

shift_verbose
If this is set, the shift builtin prints an error message when the
shift count exceeds the number of positional parameters.

sourcepath
If set, the source builtin uses the value of PATH to find the directory
containing the file supplied as an argument. This option is enabled
by default.

xpg_echo If set, the echo builtin expands backslash-escape sequences by de-
fault.

The return status when listing options is zero if all optnames are enabled, non-
zero otherwise. When setting or unsetting options, the return status is zero
unless an optname is not a valid shell option.

Chapter 4: Shell Builtin Commands 45

source

source filename

A synonym for . (see Section 4.1 [Bourne Shell Builtins], page 31).

type

type [-atp] [name ...]

For each name, indicate how it would be interpreted if used as a command
name.
If the ‘-t’ option is used, type prints a single word which is one of ‘alias’,
‘function’, ‘builtin’, ‘file’ or ‘keyword’, if name is an alias, shell function,
shell builtin, disk file, or shell reserved word, respectively. If the name is not
found, then nothing is printed, and type returns a failure status.
If the ‘-p’ option is used, type either returns the name of the disk file that
would be executed, or nothing if ‘-t’ would not return ‘file’.
If the ‘-a’ option is used, type returns all of the places that contain an exe-
cutable named file. This includes aliases and functions, if and only if the ‘-p’
option is not also used.
The return status is zero if any of the names are found, non-zero if none are
found.

typeset

typeset [-afFrxi] [-p] [name[=value]]

The typeset command is supplied for compatibility with the Korn shell; how-
ever, it has been deprecated in favor of the declare builtin command.

ulimit

ulimit [-acdflmnpstuvSH] [limit]

ulimit provides control over the resources available to processes started by the
shell, on systems that allow such control. If an option is given, it is interpreted
as follows:

-S Change and report the soft limit associated with a resource.

-H Change and report the hard limit associated with a resource.

-a All current limits are reported.

-c The maximum size of core files created.

-d The maximum size of a process’s data segment.

-f The maximum size of files created by the shell.

-l The maximum size that may be locked into memory.

-m The maximum resident set size.

-n The maximum number of open file descriptors.

-p The pipe buffer size.

-s The maximum stack size.

46 Bash Reference Manual

-t The maximum amount of cpu time in seconds.

-u The maximum number of processes available to a single user.

-v The maximum amount of virtual memory available to the process.

If limit is given, it is the new value of the specified resource; the special limit
values hard, soft, and unlimited stand for the current hard limit, the current
soft limit, and no limit, respectively. Otherwise, the current value of the soft
limit for the specified resource is printed, unless the ‘-H’ option is supplied.
When setting new limits, if neither ‘-H’ nor ‘-S’ is supplied, both the hard and
soft limits are set. If no option is given, then ‘-f’ is assumed. Values are in
1024-byte increments, except for ‘-t’, which is in seconds, ‘-p’, which is in units
of 512-byte blocks, and ‘-n’ and ‘-u’, which are unscaled values.
The return status is zero unless an invalid option or argument is supplied, or
an error occurs while setting a new limit.

unalias

unalias [-a] [name ...]

Remove each name from the list of aliases. If ‘-a’ is supplied, all aliases are
removed. Aliases are described in Section 6.6 [Aliases], page 67.

4.3 The Set Builtin

This builtin is so complicated that it deserves its own section.

set

set [--abefhkmnptuvxBCHP] [-o option] [argument ...]

If no options or arguments are supplied, set displays the names and values of
all shell variables and functions, sorted according to the current locale, in a
format that may be reused as input.
When options are supplied, they set or unset shell attributes. Options, if spec-
ified, have the following meanings:

-a Mark variables and function which are modified or created for ex-
port to the environment of subsequent commands.

-b Cause the status of terminated background jobs to be reported
immediately, rather than before printing the next primary prompt.

-e Exit immediately if a simple command (see Section 3.2.1 [Simple
Commands], page 8) exits with a non-zero status, unless the com-
mand that fails is part of an until or while loop, part of an if
statement, part of a && or || list, or if the command’s return status
is being inverted using !. A trap on ERR, if set, is executed before
the shell exits.

-f Disable file name generation (globbing).

-h Locate and remember (hash) commands as they are looked up for
execution. This option is enabled by default.

Chapter 4: Shell Builtin Commands 47

-k All arguments in the form of assignment statements are placed in
the environment for a command, not just those that precede the
command name.

-m Job control is enabled (see Chapter 7 [Job Control], page 75).

-n Read commands but do not execute them; this may be used to check
a script for syntax errors. This option is ignored by interactive
shells.

-o option-name
Set the option corresponding to option-name:

allexport
Same as -a.

braceexpand
Same as -B.

emacs Use an emacs-style line editing interface (see Chapter 8
[Command Line Editing], page 79).

errexit Same as -e.

hashall Same as -h.

histexpand
Same as -H.

history Enable command history, as described in Section 9.1
[Bash History Facilities], page 103. This option is on
by default in interactive shells.

ignoreeof
An interactive shell will not exit upon reading EOF.

keyword Same as -k.

monitor Same as -m.

noclobber
Same as -C.

noexec Same as -n.

noglob Same as -f.

nolog Currently ignored.

notify Same as -b.

nounset Same as -u.

onecmd Same as -t.

physical Same as -P.

48 Bash Reference Manual

posix Change the behavior of Bash where the default oper-
ation differs from the posix 1003.2 standard to match
the standard (see Section 6.11 [Bash POSIX Mode],
page 72). This is intended to make Bash behave as a
strict superset of that standard.

privileged
Same as -p.

verbose Same as -v.

vi Use a vi-style line editing interface.

xtrace Same as -x.

-p Turn on privileged mode. In this mode, the $BASH_ENV and $ENV
files are not processed, shell functions are not inherited from the
environment, and the SHELLOPTS variable, if it appears in the en-
vironment, is ignored. If the shell is started with the effective user
(group) id not equal to the real user (group) id, and the -p option
is not supplied, these actions are taken and the effective user id
is set to the real user id. If the -p option is supplied at startup,
the effective user id is not reset. Turning this option off causes the
effective user and group ids to be set to the real user and group ids.

-t Exit after reading and executing one command.

-u Treat unset variables as an error when performing parameter ex-
pansion. An error message will be written to the standard error,
and a non-interactive shell will exit.

-v Print shell input lines as they are read.

-x Print a trace of simple commands and their arguments after they
are expanded and before they are executed.

-B The shell will perform brace expansion (see Section 3.5.1 [Brace
Expansion], page 15). This option is on by default.

-C Prevent output redirection using ‘>’, ‘>&’, and ‘<>’ from overwriting
existing files.

-H Enable ‘!’ style history substitution (see Section 9.3 [History In-
teraction], page 105). This option is on by default for interactive
shells.

-P If set, do not follow symbolic links when performing commands
such as cd which change the current directory. The physical direc-
tory is used instead. By default, Bash follows the logical chain of
directories when performing commands which change the current
directory.
For example, if ‘/usr/sys’ is a symbolic link to ‘/usr/local/sys’
then:

Chapter 4: Shell Builtin Commands 49

$ cd /usr/sys; echo $PWD
/usr/sys
$ cd ..; pwd
/usr

If set -P is on, then:
$ cd /usr/sys; echo $PWD
/usr/local/sys
$ cd ..; pwd
/usr/local

-- If no arguments follow this option, then the positional parameters
are unset. Otherwise, the positional parameters are set to the ar-
guments, even if some of them begin with a ‘-’.

- Signal the end of options, cause all remaining arguments to be
assigned to the positional parameters. The ‘-x’ and ‘-v’ options
are turned off. If there are no arguments, the positional parameters
remain unchanged.

Using ‘+’ rather than ‘-’ causes these options to be turned off. The options can
also be used upon invocation of the shell. The current set of options may be
found in $-.
The remaining N arguments are positional parameters and are assigned, in
order, to $1, $2, . . . $N. The special parameter # is set to N.
The return status is always zero unless an invalid option is supplied.

4.4 Special Builtins

For historical reasons, the posix 1003.2 standard has classified several builtin commands
as special. When Bash is executing in posix mode, the special builtins differ from other
builtin commands in three respects:
1. Special builtins are found before shell functions during command lookup.
2. If a special builtin returns an error status, a non-interactive shell exits.
3. Assignment statements preceding the command stay in effect in the shell environment

after the command completes.

When Bash is not executing in posix mode, these builtins behave no differently than
the rest of the Bash builtin commands. The Bash posix mode is described in Section 6.11
[Bash POSIX Mode], page 72.

These are the posix special builtins:
break : . continue eval exec exit export readonly return set
shift trap unset

50 Bash Reference Manual

Chapter 5: Shell Variables 51

5 Shell Variables

This chapter describes the shell variables that Bash uses. Bash automatically assigns
default values to a number of variables.

5.1 Bourne Shell Variables

Bash uses certain shell variables in the same way as the Bourne shell. In some cases,
Bash assigns a default value to the variable.

CDPATH A colon-separated list of directories used as a search path for the cd builtin
command.

HOME The current user’s home directory; the default for the cd builtin command. The
value of this variable is also used by tilde expansion (see Section 3.5.2 [Tilde
Expansion], page 16).

IFS A list of characters that separate fields; used when the shell splits words as part
of expansion.

MAIL If this parameter is set to a filename and the MAILPATH variable is not set, Bash
informs the user of the arrival of mail in the specified file.

MAILPATH A colon-separated list of filenames which the shell periodically checks for new
mail. Each list entry can specify the message that is printed when new mail
arrives in the mail file by separating the file name from the message with a ‘?’.
When used in the text of the message, $_ expands to the name of the current
mail file.

OPTARG The value of the last option argument processed by the getopts builtin.

OPTIND The index of the last option argument processed by the getopts builtin.

PATH A colon-separated list of directories in which the shell looks for commands.

PS1 The primary prompt string. The default value is ‘\s-\v\$ ’. See Section 6.9
[Printing a Prompt], page 70, for the complete list of escape sequences that are
expanded before PS1 is displayed.

PS2 The secondary prompt string. The default value is ‘> ’.

5.2 Bash Variables

These variables are set or used by Bash, but other shells do not normally treat them
specially.

A few variables used by Bash are described in different chapters: variables for controlling
the job control facilities (see Section 7.3 [Job Control Variables], page 78).

BASH The full pathname used to execute the current instance of Bash.

52 Bash Reference Manual

BASH_ENV If this variable is set when Bash is invoked to execute a shell script, its value is
expanded and used as the name of a startup file to read before executing the
script. See Section 6.2 [Bash Startup Files], page 61.

BASH_VERSION
The version number of the current instance of Bash.

BASH_VERSINFO
A readonly array variable (see Section 6.7 [Arrays], page 68) whose members
hold version information for this instance of Bash. The values assigned to the
array members are as follows:

BASH_VERSINFO[0]
The major version number (the release).

BASH_VERSINFO[1]
The minor version number (the version).

BASH_VERSINFO[2]
The patch level.

BASH_VERSINFO[3]
The build version.

BASH_VERSINFO[4]
The release status (e.g., beta1).

BASH_VERSINFO[5]
The value of MACHTYPE.

COLUMNS Used by the select builtin command to determine the terminal width when
printing selection lists. Automatically set upon receipt of a SIGWINCH.

COMP_CWORD
An index into ${COMP_WORDS} of the word containing the current cursor po-
sition. This variable is available only in shell functions invoked by the pro-
grammable completion facilities (see Section 8.6 [Programmable Completion],
page 98).

COMP_LINE
The current command line. This variable is available only in shell functions
and external commands invoked by the programmable completion facilities (see
Section 8.6 [Programmable Completion], page 98).

COMP_POINT
The index of the current cursor position relative to the beginning of the current
command. If the current cursor position is at the end of the current command,
the value of this variable is equal to ${#COMP_LINE}. This variable is available
only in shell functions and external commands invoked by the programmable
completion facilities (see Section 8.6 [Programmable Completion], page 98).

Chapter 5: Shell Variables 53

COMP_WORDS
An array variable consisting of the individual words in the current command
line. This variable is available only in shell functions invoked by the pro-
grammable completion facilities (see Section 8.6 [Programmable Completion],
page 98).

COMPREPLY
An array variable from which Bash reads the possible completions generated
by a shell function invoked by the programmable completion facility (see Sec-
tion 8.6 [Programmable Completion], page 98).

DIRSTACK An array variable containing the current contents of the directory stack. Direc-
tories appear in the stack in the order they are displayed by the dirs builtin.
Assigning to members of this array variable may be used to modify directories
already in the stack, but the pushd and popd builtins must be used to add
and remove directories. Assignment to this variable will not change the cur-
rent directory. If DIRSTACK is unset, it loses its special properties, even if it is
subsequently reset.

EUID The numeric effective user id of the current user. This variable is readonly.

FCEDIT The editor used as a default by the ‘-e’ option to the fc builtin command.

FIGNORE A colon-separated list of suffixes to ignore when performing filename comple-
tion. A file name whose suffix matches one of the entries in FIGNORE is excluded
from the list of matched file names. A sample value is ‘.o:~’

FUNCNAME The name of any currently-executing shell function. This variable exists only
when a shell function is executing. Assignments to FUNCNAME have no effect and
return an error status. If FUNCNAME is unset, it loses its special properties, even
if it is subsequently reset.

GLOBIGNORE
A colon-separated list of patterns defining the set of filenames to be ignored
by filename expansion. If a filename matched by a filename expansion pattern
also matches one of the patterns in GLOBIGNORE, it is removed from the list of
matches.

GROUPS An array variable containing the list of groups of which the current user is a
member. Assignments to GROUPS have no effect and return an error status. If
GROUPS is unset, it loses its special properties, even if it is subsequently reset.

histchars
Up to three characters which control history expansion, quick substitution, and
tokenization (see Section 9.3 [History Interaction], page 105). The first charac-
ter is the history expansion character, that is, the character which signifies the
start of a history expansion, normally ‘!’. The second character is the character
which signifies ‘quick substitution’ when seen as the first character on a line,
normally ‘^’. The optional third character is the character which indicates that
the remainder of the line is a comment when found as the first character of a

54 Bash Reference Manual

word, usually ‘#’. The history comment character causes history substitution
to be skipped for the remaining words on the line. It does not necessarily cause
the shell parser to treat the rest of the line as a comment.

HISTCMD The history number, or index in the history list, of the current command. If
HISTCMD is unset, it loses its special properties, even if it is subsequently reset.

HISTCONTROL
A value of ‘ignorespace’ means to not enter lines which begin with a space or
tab into the history list. A value of ‘ignoredups’ means to not enter lines which
match the last entered line. A value of ‘ignoreboth’ combines the two options.
Unset, or set to any other value than those above, means to save all lines on
the history list. The second and subsequent lines of a multi-line compound
command are not tested, and are added to the history regardless of the value
of HISTCONTROL.

HISTFILE The name of the file to which the command history is saved. The default value
is ‘~/.bash_history’.

HISTFILESIZE
The maximum number of lines contained in the history file. When this variable
is assigned a value, the history file is truncated, if necessary, to contain no more
than that number of lines. The history file is also truncated to this size after
writing it when an interactive shell exits. The default value is 500.

HISTIGNORE
A colon-separated list of patterns used to decide which command lines should
be saved on the history list. Each pattern is anchored at the beginning of the
line and must match the complete line (no implicit ‘*’ is appended). Each
pattern is tested against the line after the checks specified by HISTCONTROL
are applied. In addition to the normal shell pattern matching characters, ‘&’
matches the previous history line. ‘&’ may be escaped using a backslash; the
backslash is removed before attempting a match. The second and subsequent
lines of a multi-line compound command are not tested, and are added to the
history regardless of the value of HISTIGNORE.
HISTIGNORE subsumes the function of HISTCONTROL. A pattern of ‘&’ is identical
to ignoredups, and a pattern of ‘[]*’ is identical to ignorespace. Combining
these two patterns, separating them with a colon, provides the functionality of
ignoreboth.

HISTSIZE The maximum number of commands to remember on the history list. The
default value is 500.

HOSTFILE Contains the name of a file in the same format as ‘/etc/hosts’ that should
be read when the shell needs to complete a hostname. The list of possible
hostname completions may be changed while the shell is running; the next time
hostname completion is attempted after the value is changed, Bash adds the
contents of the new file to the existing list. If HOSTFILE is set, but has no value,
Bash attempts to read ‘/etc/hosts’ to obtain the list of possible hostname
completions. When HOSTFILE is unset, the hostname list is cleared.

Chapter 5: Shell Variables 55

HOSTNAME The name of the current host.

HOSTTYPE A string describing the machine Bash is running on.

IGNOREEOF
Controls the action of the shell on receipt of an EOF character as the sole input.
If set, the value denotes the number of consecutive EOF characters that can be
read as the first character on an input line before the shell will exit. If the
variable exists but does not have a numeric value (or has no value) then the
default is 10. If the variable does not exist, then EOF signifies the end of input
to the shell. This is only in effect for interactive shells.

INPUTRC The name of the Readline initialization file, overriding the default of
‘~/.inputrc’.

LANG Used to determine the locale category for any category not specifically selected
with a variable starting with LC_.

LC_ALL This variable overrides the value of LANG and any other LC_ variable specifying
a locale category.

LC_COLLATE
This variable determines the collation order used when sorting the results of
filename expansion, and determines the behavior of range expressions, equiv-
alence classes, and collating sequences within filename expansion and pattern
matching (see Section 3.5.8 [Filename Expansion], page 20).

LC_CTYPE This variable determines the interpretation of characters and the behavior of
character classes within filename expansion and pattern matching (see Sec-
tion 3.5.8 [Filename Expansion], page 20).

LC_MESSAGES
This variable determines the locale used to translate double-quoted strings pre-
ceded by a ‘$’ (see Section 3.1.2.5 [Locale Translation], page 7).

LC_NUMERIC
This variable determines the locale category used for number formatting.

LINENO The line number in the script or shell function currently executing.

LINES Used by the select builtin command to determine the column length for print-
ing selection lists. Automatically set upon receipt of a SIGWINCH.

MACHTYPE A string that fully describes the system type on which Bash is executing, in the
standard gnu cpu-company-system format.

MAILCHECK
How often (in seconds) that the shell should check for mail in the files specified
in the MAILPATH or MAIL variables. The default is 60 seconds. When it is time
to check for mail, the shell does so before displaying the primary prompt. If
this variable is unset, or set to a value that is not a number greater than or
equal to zero, the shell disables mail checking.

56 Bash Reference Manual

OLDPWD The previous working directory as set by the cd builtin.

OPTERR If set to the value 1, Bash displays error messages generated by the getopts
builtin command.

OSTYPE A string describing the operating system Bash is running on.

PIPESTATUS
An array variable (see Section 6.7 [Arrays], page 68) containing a list of exit sta-
tus values from the processes in the most-recently-executed foreground pipeline
(which may contain only a single command).

POSIXLY_CORRECT
If this variable is in the environment when bash starts, the shell enters posix
mode (see Section 6.11 [Bash POSIX Mode], page 72) before reading the startup
files, as if the ‘--posix’ invocation option had been supplied. If it is set while
the shell is running, bash enables posix mode, as if the command

set -o posix

had been executed.

PPID The process id of the shell’s parent process. This variable is readonly.

PROMPT_COMMAND
If set, the value is interpreted as a command to execute before the printing of
each primary prompt ($PS1).

PS3 The value of this variable is used as the prompt for the select command. If
this variable is not set, the select command prompts with ‘#? ’

PS4 The value is the prompt printed before the command line is echoed when the
‘-x’ option is set (see Section 4.3 [The Set Builtin], page 46). The first character
of PS4 is replicated multiple times, as necessary, to indicate multiple levels of
indirection. The default is ‘+ ’.

PWD The current working directory as set by the cd builtin.

RANDOM Each time this parameter is referenced, a random integer between 0 and 32767
is generated. Assigning a value to this variable seeds the random number gen-
erator.

REPLY The default variable for the read builtin.

SECONDS This variable expands to the number of seconds since the shell was started.
Assignment to this variable resets the count to the value assigned, and the
expanded value becomes the value assigned plus the number of seconds since
the assignment.

SHELLOPTS
A colon-separated list of enabled shell options. Each word in the list is a valid
argument for the ‘-o’ option to the set builtin command (see Section 4.3 [The
Set Builtin], page 46). The options appearing in SHELLOPTS are those reported

Chapter 5: Shell Variables 57

as ‘on’ by ‘set -o’. If this variable is in the environment when Bash starts up,
each shell option in the list will be enabled before reading any startup files.
This variable is readonly.

SHLVL Incremented by one each time a new instance of Bash is started. This is intended
to be a count of how deeply your Bash shells are nested.

TIMEFORMAT
The value of this parameter is used as a format string specifying how the tim-
ing information for pipelines prefixed with the time reserved word should be
displayed. The ‘%’ character introduces an escape sequence that is expanded to
a time value or other information. The escape sequences and their meanings
are as follows; the braces denote optional portions.

%% A literal ‘%’.

%[p][l]R The elapsed time in seconds.

%[p][l]U The number of CPU seconds spent in user mode.

%[p][l]S The number of CPU seconds spent in system mode.

%P The CPU percentage, computed as (%U + %S) / %R.

The optional p is a digit specifying the precision, the number of fractional digits
after a decimal point. A value of 0 causes no decimal point or fraction to be
output. At most three places after the decimal point may be specified; values
of p greater than 3 are changed to 3. If p is not specified, the value 3 is used.
The optional l specifies a longer format, including minutes, of the form
MMmSS.FFs. The value of p determines whether or not the fraction is
included.
If this variable is not set, Bash acts as if it had the value

$’\nreal\t%3lR\nuser\t%3lU\nsys\t%3lS’

If the value is null, no timing information is displayed. A trailing newline is
added when the format string is displayed.

TMOUT If set to a value greater than zero, the value is interpreted as the number of
seconds to wait for input after issuing the primary prompt when the shell is
interactive. Bash terminates after that number of seconds if input does not
arrive.

UID The numeric real user id of the current user. This variable is readonly.

58 Bash Reference Manual

Chapter 6: Bash Features 59

6 Bash Features

This section describes features unique to Bash.

6.1 Invoking Bash

bash [long-opt] [-ir] [-abefhkmnptuvxdBCDHP] [-o option] [-O shopt option] [ar-
gument ...]
bash [long-opt] [-abefhkmnptuvxdBCDHP] [-o option] [-O shopt option] -c string [ar-
gument ...]
bash [long-opt] -s [-abefhkmnptuvxdBCDHP] [-o option] [-O shopt option] [ar-
gument ...]

In addition to the single-character shell command-line options (see Section 4.3 [The Set
Builtin], page 46), there are several multi-character options that you can use. These options
must appear on the command line before the single-character options in order for them to
be recognized.

--dump-po-strings
A list of all double-quoted strings preceded by ‘$’ is printed on the standard
ouput in the gnu gettext PO (portable object) file format. Equivalent to ‘-D’
except for the output format.

--dump-strings
Equivalent to ‘-D’.

--help Display a usage message on standard output and exit sucessfully.

--init-file filename
--rcfile filename

Execute commands from filename (instead of ‘~/.bashrc’) in an interactive
shell.

--login Make this shell act as if it had been directly invoked by login. When the
shell is interactive, this is equivalent to starting a login shell with ‘exec -l
bash’. When the shell is not interactive, the login shell startup files will be
executed. ‘exec bash --login’ will replace the current shell with a Bash login
shell. See Section 6.2 [Bash Startup Files], page 61, for a description of the
special behavior of a login shell.

--noediting
Do not use the gnu Readline library (see Chapter 8 [Command Line Editing],
page 79) to read command lines when the shell is interactive.

--noprofile
Don’t load the system-wide startup file ‘/etc/profile’ or any of the personal
initialization files ‘~/.bash_profile’, ‘~/.bash_login’, or ‘~/.profile’ when
Bash is invoked as a login shell.

--norc Don’t read the ‘~/.bashrc’ initialization file in an interactive shell. This is on
by default if the shell is invoked as sh.

60 Bash Reference Manual

--posix Change the behavior of Bash where the default operation differs from the posix
1003.2 standard to match the standard. This is intended to make Bash behave
as a strict superset of that standard. See Section 6.11 [Bash POSIX Mode],
page 72, for a description of the Bash posix mode.

--restricted
Make the shell a restricted shell (see Section 6.10 [The Restricted Shell],
page 71).

--verbose
Equivalent to ‘-v’. Print shell input lines as they’re read.

--version
Show version information for this instance of Bash on the standard output and
exit successfully.

There are several single-character options that may be supplied at invocation which are
not available with the set builtin.

-c string Read and execute commands from string after processing the options, then exit.
Any remaining arguments are assigned to the positional parameters, starting
with $0.

-i Force the shell to run interactively. Interactive shells are described in Section 6.3
[Interactive Shells], page 63.

-r Make the shell a restricted shell (see Section 6.10 [The Restricted Shell],
page 71).

-s If this option is present, or if no arguments remain after option processing, then
commands are read from the standard input. This option allows the positional
parameters to be set when invoking an interactive shell.

-D A list of all double-quoted strings preceded by ‘$’ is printed on the standard
ouput. These are the strings that are subject to language translation when
the current locale is not C or POSIX (see Section 3.1.2.5 [Locale Translation],
page 7). This implies the ‘-n’ option; no commands will be executed.

[-+]O [shopt option]
shopt option is one of the shell options accepted by the shopt builtin (see
Chapter 4 [Shell Builtin Commands], page 31). If shopt option is present, ‘-O’
sets the value of that option; ‘+O’ unsets it. If shopt option is not supplied,
the names and values of the shell options accepted by shopt are printed on the
standard output. If the invocation option is ‘+O’, the output is displayed in a
format that may be reused as input.

-- A -- signals the end of options and disables further option processing. Any
arguments after the -- are treated as filenames and arguments.

A login shell is one whose first character of argument zero is ‘-’, or one invoked with the
‘--login’ option.

An interactive shell is one started without non-option arguments, unless ‘-s’ is specified,
without specifying the ‘-c’ option, and whose input and output are both connected to

Chapter 6: Bash Features 61

terminals (as determined by isatty(3)), or one started with the ‘-i’ option. See Section 6.3
[Interactive Shells], page 63, for more information.

If arguments remain after option processing, and neither the ‘-c’ nor the ‘-s’ option
has been supplied, the first argument is assumed to be the name of a file containing shell
commands (see Section 3.8 [Shell Scripts], page 29). When Bash is invoked in this fashion,
$0 is set to the name of the file, and the positional parameters are set to the remaining
arguments. Bash reads and executes commands from this file, then exits. Bash’s exit status
is the exit status of the last command executed in the script. If no commands are executed,
the exit status is 0.

6.2 Bash Startup Files

This section describs how Bash executes its startup files. If any of the files exist but
cannot be read, Bash reports an error. Tildes are expanded in file names as described above
under Tilde Expansion (see Section 3.5.2 [Tilde Expansion], page 16).

Interactive shells are described in Section 6.3 [Interactive Shells], page 63.

Invoked as an interactive login shell, or with ‘--login’

When Bash is invoked as an interactive login shell, or as a non-interactive shell with
the ‘--login’ option, it first reads and executes commands from the file ‘/etc/profile’,
if that file exists. After reading that file, it looks for ‘~/.bash_profile’, ‘~/.bash_login’,
and ‘~/.profile’, in that order, and reads and executes commands from the first one that
exists and is readable. The ‘--noprofile’ option may be used when the shell is started to
inhibit this behavior.

When a login shell exits, Bash reads and executes commands from the file
‘~/.bash_logout’, if it exists.

Invoked as an interactive non-login shell

When an interactive shell that is not a login shell is started, Bash reads and executes
commands from ‘~/.bashrc’, if that file exists. This may be inhibited by using the ‘--norc’
option. The ‘--rcfile file’ option will force Bash to read and execute commands from file
instead of ‘~/.bashrc’.

So, typically, your ‘~/.bash_profile’ contains the line

if [-f ~/.bashrc]; then . ~/.bashrc; fi

after (or before) any login-specific initializations.

Invoked non-interactively

When Bash is started non-interactively, to run a shell script, for example, it looks for the
variable BASH_ENV in the environment, expands its value if it appears there, and uses the
expanded value as the name of a file to read and execute. Bash behaves as if the following
command were executed:

62 Bash Reference Manual

if [-n "$BASH_ENV"]; then . "$BASH_ENV"; fi

but the value of the PATH variable is not used to search for the file name.

As noted above, if a non-interactive shell is invoked with the ‘--login’ option, Bash
attempts to read and execute commands from the login shell startup files.

Invoked with name sh

If Bash is invoked with the name sh, it tries to mimic the startup behavior of historical
versions of sh as closely as possible, while conforming to the posix standard as well.

When invoked as an interactive login shell, or as a non-interactive shell with the
‘--login’ option, it first attempts to read and execute commands from ‘/etc/profile’
and ‘~/.profile’, in that order. The ‘--noprofile’ option may be used to inhibit this
behavior. When invoked as an interactive shell with the name sh, Bash looks for the
variable ENV, expands its value if it is defined, and uses the expanded value as the name
of a file to read and execute. Since a shell invoked as sh does not attempt to read and
execute commands from any other startup files, the ‘--rcfile’ option has no effect. A
non-interactive shell invoked with the name sh does not attempt to read any other startup
files.

When invoked as sh, Bash enters posix mode after the startup files are read.

Invoked in posix mode

When Bash is started in posix mode, as with the ‘--posix’ command line option, it
follows the posix standard for startup files. In this mode, interactive shells expand the ENV
variable and commands are read and executed from the file whose name is the expanded
value. No other startup files are read.

Invoked by remote shell daemon

Bash attempts to determine when it is being run by the remote shell daemon, usually
rshd. If Bash determines it is being run by rshd, it reads and executes commands from
‘~/.bashrc’, if that file exists and is readable. It will not do this if invoked as sh. The
‘--norc’ option may be used to inhibit this behavior, and the ‘--rcfile’ option may be
used to force another file to be read, but rshd does not generally invoke the shell with those
options or allow them to be specified.

Invoked with unequal effective and real uid/gids

If Bash is started with the effective user (group) id not equal to the real user (group) id,
and the -p option is not supplied, no startup files are read, shell functions are not inherited
from the environment, the SHELLOPTS variable, if it appears in the environment, is ignored,
and the effective user id is set to the real user id. If the -p option is supplied at invocation,
the startup behavior is the same, but the effective user id is not reset.

Chapter 6: Bash Features 63

6.3 Interactive Shells

6.3.1 What is an Interactive Shell?

An interactive shell is one started without non-option arguments, unless ‘-s’ is specified,
without specifiying the ‘-c’ option, and whose input and output are both connected to
terminals (as determined by isatty(3)), or one started with the ‘-i’ option.

An interactive shell generally reads from and writes to a user’s terminal.
The ‘-s’ invocation option may be used to set the positional parameters when an inter-

active shell is started.

6.3.2 Is this Shell Interactive?

To determine within a startup script whether or not Bash is running interactively, test
the value of the ‘-’ special parameter. It contains i when the shell is interactive. For
example:

case "$-" in
i) echo This shell is interactive ;;
*) echo This shell is not interactive ;;
esac

Alternatively, startup scripts may examine the variable PS1; it is unset in non-interactive
shells, and set in interactive shells. Thus:

if [-z "$PS1"]; then
echo This shell is not interactive

else
echo This shell is interactive

fi

6.3.3 Interactive Shell Behavior

When the shell is running interactively, it changes its behavior in several ways.
1. Startup files are read and executed as described in Section 6.2 [Bash Startup Files],

page 61.
2. Job Control (see Chapter 7 [Job Control], page 75) is enabled by default. When job

control is in effect, Bash ignores the keyboard-generated job control signals SIGTTIN,
SIGTTOU, and SIGTSTP.

3. Bash expands and displays PS1 before reading the first line of a command, and ex-
pands and displays PS2 before reading the second and subsequent lines of a multi-line
command.

4. Bash executes the value of the PROMPT_COMMAND variable as a command before printing
the primary prompt, $PS1 (see Section 5.2 [Bash Variables], page 51).

5. Readline (see Chapter 8 [Command Line Editing], page 79) is used to read commands
from the user’s terminal.

6. Bash inspects the value of the ignoreeof option to set -o instead of exiting imme-
diately when it receives an EOF on its standard input when reading a command (see
Section 4.3 [The Set Builtin], page 46).

64 Bash Reference Manual

7. Command history (see Section 9.1 [Bash History Facilities], page 103) and history
expansion (see Section 9.3 [History Interaction], page 105) are enabled by default. Bash
will save the command history to the file named by $HISTFILE when an interactive shell
exits.

8. Alias expansion (see Section 6.6 [Aliases], page 67) is performed by default.
9. In the absence of any traps, Bash ignores SIGTERM (see Section 3.7.6 [Signals], page 28).

10. In the absence of any traps, SIGINT is caught and handled ((see Section 3.7.6 [Signals],
page 28). SIGINT will interrupt some shell builtins.

11. An interactive login shell sends a SIGHUP to all jobs on exit if the hupoxexit shell
option has been enabled (see Section 3.7.6 [Signals], page 28).

12. The ‘-n’ invocation option is ignored, and ‘set -n’ has no effect (see Section 4.3 [The
Set Builtin], page 46).

13. Bash will check for mail periodically, depending on the values of the MAIL, MAILPATH,
and MAILCHECK shell variables (see Section 5.2 [Bash Variables], page 51).

14. Expansion errors due to references to unbound shell variables after ‘set -u’ has been
enabled will not cause the shell to exit (see Section 4.3 [The Set Builtin], page 46).

15. The shell will not exit on expansion errors caused by var being unset or null in
${var:?word} expansions (see Section 3.5.3 [Shell Parameter Expansion], page 17).

16. Redirection errors encountered by shell builtins will not cause the shell to exit.
17. When running in posix mode, a special builtin returning an error status will not cause

the shell to exit (see Section 6.11 [Bash POSIX Mode], page 72).
18. A failed exec will not cause the shell to exit (see Section 4.1 [Bourne Shell Builtins],

page 31).
19. Parser syntax errors will not cause the shell to exit.
20. Simple spelling correction for directory arguments to the cd builtin is enabled by default

(see the description of the cdspell option to the shopt builtin in Section 4.2 [Bash
Builtins], page 36).

21. The shell will check the value of the TMOUT variable and exit if a command is not
read within the specified number of seconds after printing $PS1 (see Section 5.2 [Bash
Variables], page 51).

6.4 Bash Conditional Expressions

Conditional expressions are used by the [[compound command and the test and [
builtin commands.

Expressions may be unary or binary. Unary expressions are often used to examine the
status of a file. There are string operators and numeric comparison operators as well. If the
file argument to one of the primaries is of the form ‘/dev/fd/N ’, then file descriptor N is
checked. If the file argument to one of the primaries is one of ‘/dev/stdin’, ‘/dev/stdout’,
or ‘/dev/stderr’, file descriptor 0, 1, or 2, respectively, is checked.

-a file True if file exists.

-b file True if file exists and is a block special file.

Chapter 6: Bash Features 65

-c file True if file exists and is a character special file.

-d file True if file exists and is a directory.

-e file True if file exists.

-f file True if file exists and is a regular file.

-g file True if file exists and its set-group-id bit is set.

-h file True if file exists and is a symbolic link.

-k file True if file exists and its "sticky" bit is set.

-p file True if file exists and is a named pipe (FIFO).

-r file True if file exists and is readable.

-s file True if file exists and has a size greater than zero.

-t fd True if file descriptor fd is open and refers to a terminal.

-u file True if file exists and its set-user-id bit is set.

-w file True if file exists and is writable.

-x file True if file exists and is executable.

-O file True if file exists and is owned by the effective user id.

-G file True if file exists and is owned by the effective group id.

-L file True if file exists and is a symbolic link.

-S file True if file exists and is a socket.

-N file True if file exists and has been modified since it was last read.

file1 -nt file2
True if file1 is newer (according to modification date) than file2.

file1 -ot file2
True if file1 is older than file2.

file1 -ef file2
True if file1 and file2 have the same device and inode numbers.

-o optname
True if shell option optname is enabled. The list of options appears in the
description of the ‘-o’ option to the set builtin (see Section 4.3 [The Set Builtin],
page 46).

-z string True if the length of string is zero.

-n string
string True if the length of string is non-zero.

string1 == string2
True if the strings are equal. ‘=’ may be used in place of ‘==’.

string1 != string2
True if the strings are not equal.

66 Bash Reference Manual

string1 < string2
True if string1 sorts before string2 lexicographically in the current locale.

string1 > string2
True if string1 sorts after string2 lexicographically in the current locale.

arg1 OP arg2
OP is one of ‘-eq’, ‘-ne’, ‘-lt’, ‘-le’, ‘-gt’, or ‘-ge’. These arithmetic binary
operators return true if arg1 is equal to, not equal to, less than, less than or
equal to, greater than, or greater than or equal to arg2, respectively. Arg1 and
arg2 may be positive or negative integers.

6.5 Shell Arithmetic

The shell allows arithmetic expressions to be evaluated, as one of the shell expansions
or by the let builtin.

Evaluation is done in long integers with no check for overflow, though division by 0 is
trapped and flagged as an error. The operators and their precedence and associativity are
the same as in the C language. The following list of operators is grouped into levels of
equal-precedence operators. The levels are listed in order of decreasing precedence.

id++ id-- variable post-increment and post-decrement

++id --id variable pre-increment and pre-decrement

- + unary minus and plus

! ~ logical and bitwise negation

** exponentiation

* / % multiplication, division, remainder

+ - addition, subtraction

<< >> left and right bitwise shifts

<= >= < > comparison

== != equality and inequality

& bitwise AND

^ bitwise exclusive OR

| bitwise OR

&& logical AND

|| logical OR

expr ? expr : expr
conditional evaluation

= *= /= %= += -= <<= >>= &= ^= |=
assignment

Chapter 6: Bash Features 67

expr1 , expr2
comma

Shell variables are allowed as operands; parameter expansion is performed before the
expression is evaluated. Within an expression, shell variables may also be referenced by
name without using the parameter expansion syntax. The value of a variable is evaluated
as an arithmetic expression when it is referenced. A shell variable need not have its integer
attribute turned on to be used in an expression.

Constants with a leading 0 are interpreted as octal numbers. A leading ‘0x’ or ‘0X’
denotes hexadecimal. Otherwise, numbers take the form [base#]n, where base is a decimal
number between 2 and 64 representing the arithmetic base, and n is a number in that base.
If base# is omitted, then base 10 is used. The digits greater than 9 are represented by
the lowercase letters, the uppercase letters, ‘@’, and ‘_’, in that order. If base is less than
or equal to 36, lowercase and uppercase letters may be used interchangably to represent
numbers between 10 and 35.

Operators are evaluated in order of precedence. Sub-expressions in parentheses are
evaluated first and may override the precedence rules above.

6.6 Aliases

Aliases allow a string to be substituted for a word when it is used as the first word of a
simple command. The shell maintains a list of aliases that may be set and unset with the
alias and unalias builtin commands.

The first word of each simple command, if unquoted, is checked to see if it has an alias.
If so, that word is replaced by the text of the alias. The alias name and the replacement
text may contain any valid shell input, including shell metacharacters, with the exception
that the alias name may not contain ‘=’. The first word of the replacement text is tested
for aliases, but a word that is identical to an alias being expanded is not expanded a second
time. This means that one may alias ls to "ls -F", for instance, and Bash does not try to
recursively expand the replacement text. If the last character of the alias value is a space
or tab character, then the next command word following the alias is also checked for alias
expansion.

Aliases are created and listed with the alias command, and removed with the unalias
command.

There is no mechanism for using arguments in the replacement text, as in csh. If
arguments are needed, a shell function should be used (see Section 3.3 [Shell Functions],
page 12).

Aliases are not expanded when the shell is not interactive, unless the expand_aliases
shell option is set using shopt (see Section 4.2 [Bash Builtins], page 36).

The rules concerning the definition and use of aliases are somewhat confusing. Bash
always reads at least one complete line of input before executing any of the commands
on that line. Aliases are expanded when a command is read, not when it is executed.
Therefore, an alias definition appearing on the same line as another command does not
take effect until the next line of input is read. The commands following the alias definition
on that line are not affected by the new alias. This behavior is also an issue when functions
are executed. Aliases are expanded when a function definition is read, not when the function

68 Bash Reference Manual

is executed, because a function definition is itself a compound command. As a consequence,
aliases defined in a function are not available until after that function is executed. To be
safe, always put alias definitions on a separate line, and do not use alias in compound
commands.

For almost every purpose, shell functions are preferred over aliases.

6.7 Arrays

Bash provides one-dimensional array variables. Any variable may be used as an array;
the declare builtin will explicitly declare an array. There is no maximum limit on the size
of an array, nor any requirement that members be indexed or assigned contiguously. Arrays
are zero-based.

An array is created automatically if any variable is assigned to using the syntax
name[subscript]=value

The subscript is treated as an arithmetic expression that must evaluate to a number greater
than or equal to zero. To explicitly declare an array, use

declare -a name

The syntax
declare -a name[subscript]

is also accepted; the subscript is ignored. Attributes may be specified for an array variable
using the declare and readonly builtins. Each attribute applies to all members of an
array.

Arrays are assigned to using compound assignments of the form
name=(value1 ... valuen)

where each value is of the form [[subscript]=]string. If the optional subscript is supplied,
that index is assigned to; otherwise the index of the element assigned is the last index
assigned to by the statement plus one. Indexing starts at zero. This syntax is also ac-
cepted by the declare builtin. Individual array elements may be assigned to using the
name[subscript]=value syntax introduced above.

Any element of an array may be referenced using ${name[subscript]}. The braces are
required to avoid conflicts with the shell’s filename expansion operators. If the subscript is
‘@’ or ‘*’, the word expands to all members of the array name. These subscripts differ only
when the word appears within double quotes. If the word is double-quoted, ${name[*]}
expands to a single word with the value of each array member separated by the first character
of the IFS variable, and ${name[@]} expands each element of name to a separate word.
When there are no array members, ${name[@]} expands to nothing. This is analogous to
the expansion of the special parameters ‘@’ and ‘*’. ${#name[subscript]} expands to the
length of ${name[subscript]}. If subscript is ‘@’ or ‘*’, the expansion is the number of
elements in the array. Referencing an array variable without a subscript is equivalent to
referencing element zero.

The unset builtin is used to destroy arrays. unset name[subscript] destroys the array
element at index subscript. unset name, where name is an array, removes the entire array.
A subscript of ‘*’ or ‘@’ also removes the entire array.

Chapter 6: Bash Features 69

The declare, local, and readonly builtins each accept a ‘-a’ option to specify an array.
The read builtin accepts a ‘-a’ option to assign a list of words read from the standard input
to an array, and can read values from the standard input into individual array elements.
The set and declare builtins display array values in a way that allows them to be reused
as input.

6.8 The Directory Stack

The directory stack is a list of recently-visited directories. The pushd builtin adds direc-
tories to the stack as it changes the current directory, and the popd builtin removes specified
directories from the stack and changes the current directory to the directory removed. The
dirs builtin displays the contents of the directory stack.

The contents of the directory stack are also visible as the value of the DIRSTACK shell
variable.

6.8.1 Directory Stack Builtins

dirs

dirs [+N | -N] [-clpv]

Display the list of currently remembered directories. Directories are added to
the list with the pushd command; the popd command removes directories from
the list.

+N Displays the Nth directory (counting from the left of the list printed
by dirs when invoked without options), starting with zero.

-N Displays the Nth directory (counting from the right of the list
printed by dirs when invoked without options), starting with zero.

-c Clears the directory stack by deleting all of the elements.

-l Produces a longer listing; the default listing format uses a tilde to
denote the home directory.

-p Causes dirs to print the directory stack with one entry per line.

-v Causes dirs to print the directory stack with one entry per line,
prefixing each entry with its index in the stack.

popd

popd [+N | -N] [-n]

Remove the top entry from the directory stack, and cd to the new top directory.
When no arguments are given, popd removes the top directory from the stack
and performs a cd to the new top directory. The elements are numbered from
0 starting at the first directory listed with dirs; i.e., popd is equivalent to popd
+0.

+N Removes the Nth directory (counting from the left of the list printed
by dirs), starting with zero.

70 Bash Reference Manual

-N Removes the Nth directory (counting from the right of the list
printed by dirs), starting with zero.

-n Suppresses the normal change of directory when removing directo-
ries from the stack, so that only the stack is manipulated.

pushd

pushd [dir | +N | -N] [-n]

Save the current directory on the top of the directory stack and then cd to dir.
With no arguments, pushd exchanges the top two directories.

+N Brings the Nth directory (counting from the left of the list printed
by dirs, starting with zero) to the top of the list by rotating the
stack.

-N Brings the Nth directory (counting from the right of the list printed
by dirs, starting with zero) to the top of the list by rotating the
stack.

-n Suppresses the normal change of directory when adding directories
to the stack, so that only the stack is manipulated.

dir Makes the current working directory be the top of the stack, and
then executes the equivalent of ‘cd dir’. cds to dir.

6.9 Controlling the Prompt

The value of the variable PROMPT_COMMAND is examined just before Bash prints each
primary prompt. If PROMPT_COMMAND is set and has a non-null value, then the value is
executed just as if it had been typed on the command line.

In addition, the following table describes the special characters which can appear in the
prompt variables:

\a A bell character.

\d The date, in "Weekday Month Date" format (e.g., "Tue May 26").

\e An escape character.

\h The hostname, up to the first ‘.’.

\H The hostname.

\j The number of jobs currently managed by the shell.

\l The basename of the shell’s terminal device name.

\n A newline.

\r A carriage return.

\s The name of the shell, the basename of $0 (the portion following the final slash).

\t The time, in 24-hour HH:MM:SS format.

\T The time, in 12-hour HH:MM:SS format.

Chapter 6: Bash Features 71

\@ The time, in 12-hour am/pm format.

\A The time, in 24-hour HH:MM format.

\u The username of the current user.

\v The version of Bash (e.g., 2.00)

\V The release of Bash, version + patchlevel (e.g., 2.00.0)

\w The current working directory.

\W The basename of $PWD.

\! The history number of this command.

\# The command number of this command.

\$ If the effective uid is 0, #, otherwise $.

\nnn The character whose ASCII code is the octal value nnn.

\\ A backslash.

\[Begin a sequence of non-printing characters. This could be used to embed a
terminal control sequence into the prompt.

\] End a sequence of non-printing characters.

The command number and the history number are usually different: the history number
of a command is its position in the history list, which may include commands restored from
the history file (see Section 9.1 [Bash History Facilities], page 103), while the command
number is the position in the sequence of commands executed during the current shell
session.

After the string is decoded, it is expanded via parameter expansion, command substi-
tution, arithmetic expansion, and quote removal, subject to the value of the promptvars
shell option (see Section 4.2 [Bash Builtins], page 36).

6.10 The Restricted Shell

If Bash is started with the name rbash, or the ‘--restricted’ option is supplied at
invocation, the shell becomes restricted. A restricted shell is used to set up an environment
more controlled than the standard shell. A restricted shell behaves identically to bash with
the exception that the following are disallowed:
• Changing directories with the cd builtin.
• Setting or unsetting the values of the SHELL, PATH, ENV, or BASH_ENV variables.
• Specifying command names containing slashes.
• Specifying a filename containing a slash as an argument to the . builtin command.
• Specifying a filename containing a slash as an argument to the ‘-p’ option to the hash

builtin command.
• Importing function definitions from the shell environment at startup.
• Parsing the value of SHELLOPTS from the shell environment at startup.
• Redirecting output using the ‘>’, ‘>|’, ‘<>’, ‘>&’, ‘&>’, and ‘>>’ redirection operators.

72 Bash Reference Manual

• Using the exec builtin to replace the shell with another command.
• Adding or deleting builtin commands with the ‘-f’ and ‘-d’ options to the enable

builtin.
• Specifying the ‘-p’ option to the command builtin.
• Turning off restricted mode with ‘set +r’ or ‘set +o restricted’.

6.11 Bash POSIX Mode

Starting Bash with the ‘--posix’ command-line option or executing ‘set -o posix’ while
Bash is running will cause Bash to conform more closely to the posix 1003.2 standard by
changing the behavior to match that specified by posix in areas where the Bash default
differs.

The following list is what’s changed when ‘posix mode’ is in effect:
1. When a command in the hash table no longer exists, Bash will re-search $PATH to find

the new location. This is also available with ‘shopt -s checkhash’.
2. The message printed by the job control code and builtins when a job exits with a

non-zero status is ‘Done(status)’.
3. The message printed by the job control code and builtins when a job is stopped is

‘Stopped(signame)’, where signame is, for example, SIGTSTP.
4. Reserved words may not be aliased.
5. The posix 1003.2 PS1 and PS2 expansions of ‘!’ to the history number and ‘!!’ to

‘!’ are enabled, and parameter expansion is performed on the values of PS1 and PS2
regardless of the setting of the promptvars option.

6. Interactive comments are enabled by default. (Bash has them on by default anyway.)
7. The posix 1003.2 startup files are executed ($ENV) rather than the normal Bash files.
8. Tilde expansion is only performed on assignments preceding a command name, rather

than on all assignment statements on the line.
9. The default history file is ‘~/.sh_history’ (this is the default value of $HISTFILE).

10. The output of ‘kill -l’ prints all the signal names on a single line, separated by spaces.
11. Non-interactive shells exit if filename in . filename is not found.
12. Non-interactive shells exit if a syntax error in an arithmetic expansion results in an

invalid expression.
13. Redirection operators do not perform filename expansion on the word in the redirection

unless the shell is interactive.
14. Redirection operators do not perform word splitting on the word in the redirection.
15. Function names must be valid shell names. That is, they may not contain characters

other than letters, digits, and underscores, and may not start with a digit. Declaring
a function with an invalid name causes a fatal syntax error in non-interactive shells.

16. posix 1003.2 ‘special’ builtins are found before shell functions during command lookup.
17. If a posix 1003.2 special builtin returns an error status, a non-interactive shell exits.

The fatal errors are those listed in the POSIX.2 standard, and include things like
passing incorrect options, redirection errors, variable assignment errors for assignments
preceding the command name, and so on.

Chapter 6: Bash Features 73

18. If the cd builtin finds a directory to change to using $CDPATH, the value it assigns to
the PWD variable does not contain any symbolic links, as if ‘cd -P’ had been executed.

19. If CDPATH is set, the cd builtin will not implicitly append the current directory to it.
This means that cd will fail if no valid directory name can be constructed from any of
the entries in $CDPATH, even if the a directory with the same name as the name given
as an argument to cd exists in the current directory.

20. A non-interactive shell exits with an error status if a variable assignment error occurs
when no command name follows the assignment statements. A variable assignment
error occurs, for example, when trying to assign a value to a readonly variable.

21. A non-interactive shell exits with an error status if the iteration variable in a for
statement or the selection variable in a select statement is a readonly variable.

22. Process substitution is not available.
23. Assignment statements preceding posix 1003.2 special builtins persist in the shell en-

vironment after the builtin completes.
24. Assignment statements preceding shell function calls persist in the shell environment

after the function returns, as if a posix special builtin command had been executed.
25. The export and readonly builtin commands display their output in the format re-

quired by posix 1003.2.
26. The trap builtin displays signal names without the leading SIG.
27. The . and source builtins do not search the current directory for the filename argument

if it is not found by searching PATH.
28. Subshells spawned to execute command substitutions inherit the value of the ‘-e’ option

from the parent shell. When not in posix mode, Bash clears the ‘-e’ option in such
subshells.

29. Alias expansion is always enabled, even in non-interactive shells.
30. When the set builtin is invoked without options, it does not display shell function

names and definitions.
31. When the set builtin is invoked without options, it displays variable values without

quotes, unless they contain shell metacharacters, even if the result contains nonprinting
characters.

There is other posix 1003.2 behavior that Bash does not implement. Specifically:
1. Assignment statements affect the execution environment of all builtins, not just special

ones.
2. When a subshell is created to execute a shell script with execute permission, but without

a leading ‘#!’, Bash sets $0 to the full pathname of the script as found by searching
$PATH, rather than the command as typed by the user.

3. When using ‘.’ to source a shell script found in $PATH, bash checks execute permission
bits rather than read permission bits, just as if it were searching for a command.

74 Bash Reference Manual

Chapter 7: Job Control 75

7 Job Control

This chapter discusses what job control is, how it works, and how Bash allows you to
access its facilities.

7.1 Job Control Basics

Job control refers to the ability to selectively stop (suspend) the execution of processes
and continue (resume) their execution at a later point. A user typically employs this facility
via an interactive interface supplied jointly by the system’s terminal driver and Bash.

The shell associates a job with each pipeline. It keeps a table of currently executing jobs,
which may be listed with the jobs command. When Bash starts a job asynchronously, it
prints a line that looks like:

[1] 25647

indicating that this job is job number 1 and that the process id of the last process in the
pipeline associated with this job is 25647. All of the processes in a single pipeline are
members of the same job. Bash uses the job abstraction as the basis for job control.

To facilitate the implementation of the user interface to job control, the operating system
maintains the notion of a current terminal process group id. Members of this process group
(processes whose process group id is equal to the current terminal process group id) receive
keyboard-generated signals such as SIGINT. These processes are said to be in the foreground.
Background processes are those whose process group id differs from the terminal’s; such
processes are immune to keyboard-generated signals. Only foreground processes are allowed
to read from or write to the terminal. Background processes which attempt to read from
(write to) the terminal are sent a SIGTTIN (SIGTTOU) signal by the terminal driver, which,
unless caught, suspends the process.

If the operating system on which Bash is running supports job control, Bash contains
facilities to use it. Typing the suspend character (typically ‘^Z’, Control-Z) while a process
is running causes that process to be stopped and returns control to Bash. Typing the
delayed suspend character (typically ‘^Y’, Control-Y) causes the process to be stopped
when it attempts to read input from the terminal, and control to be returned to Bash. The
user then manipulates the state of this job, using the bg command to continue it in the
background, the fg command to continue it in the foreground, or the kill command to
kill it. A ‘^Z’ takes effect immediately, and has the additional side effect of causing pending
output and typeahead to be discarded.

There are a number of ways to refer to a job in the shell. The character ‘%’ introduces
a job name.

Job number n may be referred to as ‘%n’. The symbols ‘%%’ and ‘%+’ refer to the shell’s
notion of the current job, which is the last job stopped while it was in the foreground
or started in the background. The previous job may be referenced using ‘%-’. In output
pertaining to jobs (e.g., the output of the jobs command), the current job is always flagged
with a ‘+’, and the previous job with a ‘-’.

A job may also be referred to using a prefix of the name used to start it, or using a
substring that appears in its command line. For example, ‘%ce’ refers to a stopped ce job.

76 Bash Reference Manual

Using ‘%?ce’, on the other hand, refers to any job containing the string ‘ce’ in its command
line. If the prefix or substring matches more than one job, Bash reports an error.

Simply naming a job can be used to bring it into the foreground: ‘%1’ is a synonym for
‘fg %1’, bringing job 1 from the background into the foreground. Similarly, ‘%1 &’ resumes
job 1 in the background, equivalent to ‘bg %1’

The shell learns immediately whenever a job changes state. Normally, Bash waits until
it is about to print a prompt before reporting changes in a job’s status so as to not interrupt
any other output. If the ‘-b’ option to the set builtin is enabled, Bash reports such changes
immediately (see Section 4.3 [The Set Builtin], page 46). Any trap on SIGCHLD is executed
for each child process that exits.

If an attempt to exit Bash is while jobs are stopped, the shell prints a message warning
that there are stopped jobs. The jobs command may then be used to inspect their status.
If a second attempt to exit is made without an intervening command, Bash does not print
another warning, and the stopped jobs are terminated.

7.2 Job Control Builtins

bg

bg [jobspec]

Resume the suspended job jobspec in the background, as if it had been started
with ‘&’. If jobspec is not supplied, the current job is used. The return status
is zero unless it is run when job control is not enabled, or, when run with job
control enabled, if jobspec was not found or jobspec specifies a job that was
started without job control.

fg

fg [jobspec]

Resume the job jobspec in the foreground and make it the current job. If
jobspec is not supplied, the current job is used. The return status is that of
the command placed into the foreground, or non-zero if run when job control
is disabled or, when run with job control enabled, jobspec does not specify a
valid job or jobspec specifies a job that was started without job control.

jobs

jobs [-lnprs] [jobspec]
jobs -x command [arguments]

The first form lists the active jobs. The options have the following meanings:

-l List process ids in addition to the normal information.

-n Display information only about jobs that have changed status since
the user was last notified of their status.

-p List only the process id of the job’s process group leader.

-r Restrict output to running jobs.

-s Restrict output to stopped jobs.

Chapter 7: Job Control 77

If jobspec is given, output is restricted to information about that job. If jobspec
is not supplied, the status of all jobs is listed.

If the ‘-x’ option is supplied, jobs replaces any jobspec found in command or
arguments with the corresponding process group id, and executes command,
passing it arguments, returning its exit status.

kill

kill [-s sigspec] [-n signum] [-sigspec] jobspec or pid
kill -l [exit status]

Send a signal specified by sigspec or signum to the process named by job specifi-
cation jobspec or process id pid. sigspec is either a signal name such as SIGINT
(with or without the SIG prefix) or a signal number; signum is a signal number.
If sigspec and signum are not present, SIGTERM is used. The ‘-l’ option lists
the signal names. If any arguments are supplied when ‘-l’ is given, the names
of the signals corresponding to the arguments are listed, and the return status
is zero. exit status is a number specifying a signal number or the exit status
of a process terminated by a signal. The return status is zero if at least one
signal was successfully sent, or non-zero if an error occurs or an invalid option
is encountered.

wait

wait [jobspec or pid]

Wait until the child process specified by process id pid or job specification
jobspec exits and return the exit status of the last command waited for. If a
job spec is given, all processes in the job are waited for. If no arguments are
given, all currently active child processes are waited for, and the return status
is zero. If neither jobspec nor pid specifies an active child process of the shell,
the return status is 127.

disown

disown [-ar] [-h] [jobspec ...]

Without options, each jobspec is removed from the table of active jobs. If the
‘-h’ option is given, the job is not removed from the table, but is marked so
that SIGHUP is not sent to the job if the shell receives a SIGHUP. If jobspec is
not present, and neither the ‘-a’ nor ‘-r’ option is supplied, the current job is
used. If no jobspec is supplied, the ‘-a’ option means to remove or mark all
jobs; the ‘-r’ option without a jobspec argument restricts operation to running
jobs.

suspend

suspend [-f]

Suspend the execution of this shell until it receives a SIGCONT signal. The ‘-f’
option means to suspend even if the shell is a login shell.

When job control is not active, the kill and wait builtins do not accept jobspec argu-
ments. They must be supplied process ids.

78 Bash Reference Manual

7.3 Job Control Variables

auto_resume
This variable controls how the shell interacts with the user and job control. If
this variable exists then single word simple commands without redirections are
treated as candidates for resumption of an existing job. There is no ambiguity
allowed; if there is more than one job beginning with the string typed, then the
most recently accessed job will be selected. The name of a stopped job, in this
context, is the command line used to start it. If this variable is set to the value
‘exact’, the string supplied must match the name of a stopped job exactly; if
set to ‘substring’, the string supplied needs to match a substring of the name
of a stopped job. The ‘substring’ value provides functionality analogous to
the ‘%?’ job id (see Section 7.1 [Job Control Basics], page 75). If set to any
other value, the supplied string must be a prefix of a stopped job’s name; this
provides functionality analogous to the ‘%’ job id.

Chapter 8: Command Line Editing 79

8 Command Line Editing

This chapter describes the basic features of the gnu command line editing interface.
Command line editing is provided by the Readline library, which is used by several different
programs, including Bash.

8.1 Introduction to Line Editing

The following paragraphs describe the notation used to represent keystrokes.

The text C-k is read as ‘Control-K’ and describes the character produced when the 〈k〉
key is pressed while the Control key is depressed.

The text M-k is read as ‘Meta-K’ and describes the character produced when the Meta
key (if you have one) is depressed, and the 〈k〉 key is pressed. The Meta key is labeled 〈ALT〉
on many keyboards. On keyboards with two keys labeled 〈ALT〉 (usually to either side of the
space bar), the 〈ALT〉 on the left side is generally set to work as a Meta key. The 〈ALT〉 key
on the right may also be configured to work as a Meta key or may be configured as some
other modifier, such as a Compose key for typing accented characters.

If you do not have a Meta or 〈ALT〉 key, or another key working as a Meta key, the identical
keystroke can be generated by typing 〈ESC〉 first, and then typing 〈k〉. Either process is known
as metafying the 〈k〉 key.

The text M-C-k is read as ‘Meta-Control-k’ and describes the character produced by
metafying C-k.

In addition, several keys have their own names. Specifically, 〈DEL〉, 〈ESC〉, 〈LFD〉, 〈SPC〉,
〈RET〉, and 〈TAB〉 all stand for themselves when seen in this text, or in an init file (see
Section 8.3 [Readline Init File], page 82). If your keyboard lacks a 〈LFD〉 key, typing 〈C-j〉
will produce the desired character. The 〈RET〉 key may be labeled 〈Return〉 or 〈Enter〉 on some
keyboards.

8.2 Readline Interaction

Often during an interactive session you type in a long line of text, only to notice that the
first word on the line is misspelled. The Readline library gives you a set of commands for
manipulating the text as you type it in, allowing you to just fix your typo, and not forcing
you to retype the majority of the line. Using these editing commands, you move the cursor
to the place that needs correction, and delete or insert the text of the corrections. Then,
when you are satisfied with the line, you simply press 〈RET〉. You do not have to be at the
end of the line to press 〈RET〉; the entire line is accepted regardless of the location of the
cursor within the line.

8.2.1 Readline Bare Essentials

In order to enter characters into the line, simply type them. The typed character appears
where the cursor was, and then the cursor moves one space to the right. If you mistype a
character, you can use your erase character to back up and delete the mistyped character.

80 Bash Reference Manual

Sometimes you may mistype a character, and not notice the error until you have typed
several other characters. In that case, you can type C-b to move the cursor to the left, and
then correct your mistake. Afterwards, you can move the cursor to the right with C-f.

When you add text in the middle of a line, you will notice that characters to the right
of the cursor are ‘pushed over’ to make room for the text that you have inserted. Likewise,
when you delete text behind the cursor, characters to the right of the cursor are ‘pulled
back’ to fill in the blank space created by the removal of the text. A list of the bare essentials
for editing the text of an input line follows.

C-b Move back one character.

C-f Move forward one character.

〈DEL〉 or 〈Backspace〉
Delete the character to the left of the cursor.

C-d Delete the character underneath the cursor.

Printing characters
Insert the character into the line at the cursor.

C-_ or C-x C-u

Undo the last editing command. You can undo all the way back to an empty
line.

(Depending on your configuration, the 〈Backspace〉 key be set to delete the character to the
left of the cursor and the 〈DEL〉 key set to delete the character underneath the cursor, like
C-d, rather than the character to the left of the cursor.)

8.2.2 Readline Movement Commands

The above table describes the most basic keystrokes that you need in order to do editing
of the input line. For your convenience, many other commands have been added in addition
to C-b, C-f, C-d, and 〈DEL〉. Here are some commands for moving more rapidly about the
line.

C-a Move to the start of the line.

C-e Move to the end of the line.

M-f Move forward a word, where a word is composed of letters and digits.

M-b Move backward a word.

C-l Clear the screen, reprinting the current line at the top.

Notice how C-f moves forward a character, while M-f moves forward a word. It is a loose
convention that control keystrokes operate on characters while meta keystrokes operate on
words.

8.2.3 Readline Killing Commands

Killing text means to delete the text from the line, but to save it away for later use,
usually by yanking (re-inserting) it back into the line. (‘Cut’ and ‘paste’ are more recent
jargon for ‘kill’ and ‘yank’.)

Chapter 8: Command Line Editing 81

If the description for a command says that it ‘kills’ text, then you can be sure that you
can get the text back in a different (or the same) place later.

When you use a kill command, the text is saved in a kill-ring. Any number of consecutive
kills save all of the killed text together, so that when you yank it back, you get it all. The
kill ring is not line specific; the text that you killed on a previously typed line is available
to be yanked back later, when you are typing another line.

Here is the list of commands for killing text.

C-k Kill the text from the current cursor position to the end of the line.

M-d Kill from the cursor to the end of the current word, or, if between words, to the
end of the next word. Word boundaries are the same as those used by M-f.

M-〈DEL〉 Kill from the cursor the start of the current word, or, if between words, to the
start of the previous word. Word boundaries are the same as those used by
M-b.

C-w Kill from the cursor to the previous whitespace. This is different than M-〈DEL〉
because the word boundaries differ.

Here is how to yank the text back into the line. Yanking means to copy the most-
recently-killed text from the kill buffer.

C-y Yank the most recently killed text back into the buffer at the cursor.

M-y Rotate the kill-ring, and yank the new top. You can only do this if the prior
command is C-y or M-y.

8.2.4 Readline Arguments

You can pass numeric arguments to Readline commands. Sometimes the argument acts
as a repeat count, other times it is the sign of the argument that is significant. If you
pass a negative argument to a command which normally acts in a forward direction, that
command will act in a backward direction. For example, to kill text back to the start of
the line, you might type ‘M-- C-k’.

The general way to pass numeric arguments to a command is to type meta digits before
the command. If the first ‘digit’ typed is a minus sign (‘-’), then the sign of the argument
will be negative. Once you have typed one meta digit to get the argument started, you
can type the remainder of the digits, and then the command. For example, to give the C-d

command an argument of 10, you could type ‘M-1 0 C-d’, which will delete the next ten
characters on the input line.

8.2.5 Searching for Commands in the History

Readline provides commands for searching through the command history (see Section 9.1
[Bash History Facilities], page 103) for lines containing a specified string. There are two
search modes: incremental and non-incremental.

Incremental searches begin before the user has finished typing the search string. As each
character of the search string is typed, Readline displays the next entry from the history
matching the string typed so far. An incremental search requires only as many characters as

82 Bash Reference Manual

needed to find the desired history entry. To search backward in the history for a particular
string, type C-r. Typing C-s searches forward through the history. The characters present
in the value of the isearch-terminators variable are used to terminate an incremental
search. If that variable has not been assigned a value, the 〈ESC〉 and C-J characters will
terminate an incremental search. C-g will abort an incremental search and restore the
original line. When the search is terminated, the history entry containing the search string
becomes the current line.

To find other matching entries in the history list, type C-r or C-s as appropriate. This
will search backward or forward in the history for the next entry matching the search string
typed so far. Any other key sequence bound to a Readline command will terminate the
search and execute that command. For instance, a 〈RET〉 will terminate the search and accept
the line, thereby executing the command from the history list. A movement command will
terminate the search, make the last line found the current line, and begin editing.

Readline remembers the last incremental search string. If two C-rs are typed without
any intervening characters defining a new search string, any remembered search string is
used.

Non-incremental searches read the entire search string before starting to search for
matching history lines. The search string may be typed by the user or be part of the
contents of the current line.

8.3 Readline Init File

Although the Readline library comes with a set of Emacs-like keybindings installed
by default, it is possible to use a different set of keybindings. Any user can customize
programs that use Readline by putting commands in an inputrc file, conventionally in his
home directory. The name of this file is taken from the value of the shell variable INPUTRC.
If that variable is unset, the default is ‘~/.inputrc’.

When a program which uses the Readline library starts up, the init file is read, and the
key bindings are set.

In addition, the C-x C-r command re-reads this init file, thus incorporating any changes
that you might have made to it.

8.3.1 Readline Init File Syntax

There are only a few basic constructs allowed in the Readline init file. Blank lines are
ignored. Lines beginning with a ‘#’ are comments. Lines beginning with a ‘$’ indicate
conditional constructs (see Section 8.3.2 [Conditional Init Constructs], page 87). Other
lines denote variable settings and key bindings.

Variable Settings
You can modify the run-time behavior of Readline by altering the values of
variables in Readline using the set command within the init file. The syntax
is simple:

set variable value

Here, for example, is how to change from the default Emacs-like key binding to
use vi line editing commands:

Chapter 8: Command Line Editing 83

set editing-mode vi

Variable names and values, where appropriate, are recognized without regard
to case.
The bind -V command lists the current Readline variable names and values.
See Section 4.2 [Bash Builtins], page 36.
A great deal of run-time behavior is changeable with the following variables.

bell-style
Controls what happens when Readline wants to ring the termi-
nal bell. If set to ‘none’, Readline never rings the bell. If set to
‘visible’, Readline uses a visible bell if one is available. If set to
‘audible’ (the default), Readline attempts to ring the terminal’s
bell.

comment-begin
The string to insert at the beginning of the line when the insert-
comment command is executed. The default value is "#".

completion-ignore-case
If set to ‘on’, Readline performs filename matching and completion
in a case-insensitive fashion. The default value is ‘off’.

completion-query-items
The number of possible completions that determines when the user
is asked whether he wants to see the list of possibilities. If the
number of possible completions is greater than this value, Readline
will ask the user whether or not he wishes to view them; otherwise,
they are simply listed. This variable must be set to an integer value
greater than or equal to 0. The default limit is 100.

convert-meta
If set to ‘on’, Readline will convert characters with the eighth bit set
to an ascii key sequence by stripping the eighth bit and prefixing an
〈ESC〉 character, converting them to a meta-prefixed key sequence.
The default value is ‘on’.

disable-completion
If set to ‘On’, Readline will inhibit word completion. Completion
characters will be inserted into the line as if they had been mapped
to self-insert. The default is ‘off’.

editing-mode
The editing-mode variable controls which default set of key bind-
ings is used. By default, Readline starts up in Emacs editing mode,
where the keystrokes are most similar to Emacs. This variable can
be set to either ‘emacs’ or ‘vi’.

enable-keypad
When set to ‘on’, Readline will try to enable the application keypad
when it is called. Some systems need this to enable the arrow keys.
The default is ‘off’.

84 Bash Reference Manual

expand-tilde
If set to ‘on’, tilde expansion is performed when Readline attempts
word completion. The default is ‘off’.

If set to ‘on’, the history code attempts to place point at the same
location on each history line retrived with previous-history or
next-history.

horizontal-scroll-mode
This variable can be set to either ‘on’ or ‘off’. Setting it to ‘on’
means that the text of the lines being edited will scroll horizontally
on a single screen line when they are longer than the width of the
screen, instead of wrapping onto a new screen line. By default, this
variable is set to ‘off’.

input-meta
If set to ‘on’, Readline will enable eight-bit input (it will not clear
the eighth bit in the characters it reads), regardless of what the
terminal claims it can support. The default value is ‘off’. The
name meta-flag is a synonym for this variable.

isearch-terminators
The string of characters that should terminate an incremental
search without subsequently executing the character as a command
(see Section 8.2.5 [Searching], page 81). If this variable has not
been given a value, the characters 〈ESC〉 and C-J will terminate an
incremental search.

keymap Sets Readline’s idea of the current keymap for key binding com-
mands. Acceptable keymap names are emacs, emacs-standard,
emacs-meta, emacs-ctlx, vi, vi-move, vi-command, and
vi-insert. vi is equivalent to vi-command; emacs is equivalent
to emacs-standard. The default value is emacs. The value of the
editing-mode variable also affects the default keymap.

mark-directories
If set to ‘on’, completed directory names have a slash appended.
The default is ‘on’.

mark-modified-lines
This variable, when set to ‘on’, causes Readline to display an as-
terisk (‘*’) at the start of history lines which have been modified.
This variable is ‘off’ by default.

match-hidden-files
This variable, when set to ‘on’, causes Readline to match files whose
names begin with a ‘.’ (hidden files) when performing filename
completion, unless the leading ‘.’ is supplied by the user in the
filename to be completed. This variable is ‘on’ by default.

Chapter 8: Command Line Editing 85

output-meta
If set to ‘on’, Readline will display characters with the eighth bit
set directly rather than as a meta-prefixed escape sequence. The
default is ‘off’.

print-completions-horizontally
If set to ‘on’, Readline will display completions with matches sorted
horizontally in alphabetical order, rather than down the screen.
The default is ‘off’.

show-all-if-ambiguous
This alters the default behavior of the completion functions. If set
to ‘on’, words which have more than one possible completion cause
the matches to be listed immediately instead of ringing the bell.
The default value is ‘off’.

visible-stats
If set to ‘on’, a character denoting a file’s type is appended to the
filename when listing possible completions. The default is ‘off’.

Key Bindings
The syntax for controlling key bindings in the init file is simple. First you
need to find the name of the command that you want to change. The following
sections contain tables of the command name, the default keybinding, if any,
and a short description of what the command does.

Once you know the name of the command, simply place on a line in the init
file the name of the key you wish to bind the command to, a colon, and then
the name of the command. The name of the key can be expressed in different
ways, depending on what you find most comfortable.

In addition to command names, readline allows keys to be bound to a string
that is inserted when the key is pressed (a macro).

The bind -p command displays Readline function names and bindings in a
format that can put directly into an initialization file. See Section 4.2 [Bash
Builtins], page 36.

keyname: function-name or macro
keyname is the name of a key spelled out in English. For example:

Control-u: universal-argument
Meta-Rubout: backward-kill-word
Control-o: "> output"

In the above example, C-u is bound to the function universal-
argument, M-DEL is bound to the function backward-kill-word,
and C-o is bound to run the macro expressed on the right hand
side (that is, to insert the text ‘> output’ into the line).

A number of symbolic character names are recognized while pro-
cessing this key binding syntax: DEL, ESC, ESCAPE, LFD, NEW-
LINE, RET, RETURN, RUBOUT, SPACE, SPC, and TAB.

86 Bash Reference Manual

"keyseq": function-name or macro
keyseq differs from keyname above in that strings denoting an en-
tire key sequence can be specified, by placing the key sequence in
double quotes. Some gnu Emacs style key escapes can be used, as
in the following example, but the special character names are not
recognized.

"\C-u": universal-argument
"\C-x\C-r": re-read-init-file
"\e[11~": "Function Key 1"

In the above example, C-u is again bound to the function
universal-argument (just as it was in the first example), ‘C-x
C-r’ is bound to the function re-read-init-file, and ‘〈ESC〉 〈[〉
〈1〉 〈1〉 〈~〉’ is bound to insert the text ‘Function Key 1’.

The following gnu Emacs style escape sequences are available when specifying
key sequences:

\C- control prefix

\M- meta prefix

\e an escape character

\\ backslash

\" 〈"〉, a double quotation mark

\’ 〈’〉, a single quote or apostrophe

In addition to the gnu Emacs style escape sequences, a second set of backslash
escapes is available:

\a alert (bell)

\b backspace

\d delete

\f form feed

\n newline

\r carriage return

\t horizontal tab

\v vertical tab

\nnn the eight-bit character whose value is the octal value nnn (one to
three digits)

\xHH the eight-bit character whose value is the hexadecimal value HH
(one or two hex digits)

When entering the text of a macro, single or double quotes must be used to
indicate a macro definition. Unquoted text is assumed to be a function name. In
the macro body, the backslash escapes described above are expanded. Backslash
will quote any other character in the macro text, including ‘"’ and ‘’’. For
example, the following binding will make ‘C-x \’ insert a single ‘\’ into the line:

Chapter 8: Command Line Editing 87

"\C-x\\": "\\"

8.3.2 Conditional Init Constructs

Readline implements a facility similar in spirit to the conditional compilation features
of the C preprocessor which allows key bindings and variable settings to be performed as
the result of tests. There are four parser directives used.

$if The $if construct allows bindings to be made based on the editing mode, the
terminal being used, or the application using Readline. The text of the test
extends to the end of the line; no characters are required to isolate it.

mode The mode= form of the $if directive is used to test whether Readline
is in emacs or vi mode. This may be used in conjunction with the
‘set keymap’ command, for instance, to set bindings in the emacs-
standard and emacs-ctlx keymaps only if Readline is starting out
in emacs mode.

term The term= form may be used to include terminal-specific key bind-
ings, perhaps to bind the key sequences output by the terminal’s
function keys. The word on the right side of the ‘=’ is tested against
both the full name of the terminal and the portion of the terminal
name before the first ‘-’. This allows sun to match both sun and
sun-cmd, for instance.

application
The application construct is used to include application-specific set-
tings. Each program using the Readline library sets the application
name, and you can test for a particular value. This could be used to
bind key sequences to functions useful for a specific program. For
instance, the following command adds a key sequence that quotes
the current or previous word in Bash:

$if Bash
Quote the current or previous word
"\C-xq": "\eb\"\ef\""
$endif

$endif This command, as seen in the previous example, terminates an $if command.

$else Commands in this branch of the $if directive are executed if the test fails.

$include This directive takes a single filename as an argument and reads commands
and bindings from that file. For example, the following directive reads from
‘/etc/inputrc’:

$include /etc/inputrc

8.3.3 Sample Init File

Here is an example of an inputrc file. This illustrates key binding, variable assignment,
and conditional syntax.

88 Bash Reference Manual

This file controls the behaviour of line input editing for
programs that use the Gnu Readline library. Existing programs
include FTP, Bash, and Gdb.
#
You can re-read the inputrc file with C-x C-r.
Lines beginning with ’#’ are comments.
#
First, include any systemwide bindings and variable assignments from
/etc/Inputrc
$include /etc/Inputrc

#
Set various bindings for emacs mode.

set editing-mode emacs

$if mode=emacs

Meta-Control-h: backward-kill-word Text after the function name is ignored

#
Arrow keys in keypad mode
#
#"\M-OD": backward-char
#"\M-OC": forward-char
#"\M-OA": previous-history
#"\M-OB": next-history
#
Arrow keys in ANSI mode
#
"\M-[D": backward-char
"\M-[C": forward-char
"\M-[A": previous-history
"\M-[B": next-history
#
Arrow keys in 8 bit keypad mode
#
#"\M-\C-OD": backward-char
#"\M-\C-OC": forward-char
#"\M-\C-OA": previous-history
#"\M-\C-OB": next-history
#
Arrow keys in 8 bit ANSI mode
#
#"\M-\C-[D": backward-char
#"\M-\C-[C": forward-char
#"\M-\C-[A": previous-history
#"\M-\C-[B": next-history

Chapter 8: Command Line Editing 89

C-q: quoted-insert

$endif

An old-style binding. This happens to be the default.
TAB: complete

Macros that are convenient for shell interaction
$if Bash
edit the path
"\C-xp": "PATH=${PATH}\e\C-e\C-a\ef\C-f"
prepare to type a quoted word -- insert open and close double quotes
and move to just after the open quote
"\C-x\"": "\"\"\C-b"
insert a backslash (testing backslash escapes in sequences and macros)
"\C-x\\": "\\"
Quote the current or previous word
"\C-xq": "\eb\"\ef\""
Add a binding to refresh the line, which is unbound
"\C-xr": redraw-current-line
Edit variable on current line.
"\M-\C-v": "\C-a\C-k$\C-y\M-\C-e\C-a\C-y="
$endif

use a visible bell if one is available
set bell-style visible

don’t strip characters to 7 bits when reading
set input-meta on

allow iso-latin1 characters to be inserted rather than converted to
prefix-meta sequences
set convert-meta off

display characters with the eighth bit set directly rather than
as meta-prefixed characters
set output-meta on

if there are more than 150 possible completions for a word, ask the
user if he wants to see all of them
set completion-query-items 150

For FTP
$if Ftp
"\C-xg": "get \M-?"
"\C-xt": "put \M-?"
"\M-.": yank-last-arg
$endif

90 Bash Reference Manual

8.4 Bindable Readline Commands

This section describes Readline commands that may be bound to key sequences. You
can list your key bindings by executing bind -P or, for a more terse format, suitable for an
inputrc file, bind -p. (See Section 4.2 [Bash Builtins], page 36.) Command names without
an accompanying key sequence are unbound by default.

In the following descriptions, point refers to the current cursor position, and mark refers
to a cursor position saved by the set-mark command. The text between the point and
mark is referred to as the region.

8.4.1 Commands For Moving

beginning-of-line (C-a)
Move to the start of the current line.

end-of-line (C-e)
Move to the end of the line.

forward-char (C-f)
Move forward a character.

backward-char (C-b)
Move back a character.

forward-word (M-f)
Move forward to the end of the next word. Words are composed of letters and
digits.

backward-word (M-b)
Move back to the start of the current or previous word. Words are composed
of letters and digits.

clear-screen (C-l)
Clear the screen and redraw the current line, leaving the current line at the top
of the screen.

redraw-current-line ()
Refresh the current line. By default, this is unbound.

8.4.2 Commands For Manipulating The History

accept-line (Newline or Return)
Accept the line regardless of where the cursor is. If this line is non-empty, add it
to the history list according to the setting of the HISTCONTROL and HISTIGNORE
variables. If this line is a modified history line, then restore the history line to
its original state.

previous-history (C-p)
Move ‘back’ through the history list, fetching the previous command.

Chapter 8: Command Line Editing 91

next-history (C-n)
Move ‘forward’ through the history list, fetching the next command.

beginning-of-history (M-<)
Move to the first line in the history.

end-of-history (M->)
Move to the end of the input history, i.e., the line currently being entered.

reverse-search-history (C-r)
Search backward starting at the current line and moving ‘up’ through the his-
tory as necessary. This is an incremental search.

forward-search-history (C-s)
Search forward starting at the current line and moving ‘down’ through the the
history as necessary. This is an incremental search.

non-incremental-reverse-search-history (M-p)
Search backward starting at the current line and moving ‘up’ through the his-
tory as necessary using a non-incremental search for a string supplied by the
user.

non-incremental-forward-search-history (M-n)
Search forward starting at the current line and moving ‘down’ through the the
history as necessary using a non-incremental search for a string supplied by the
user.

history-search-forward ()
Search forward through the history for the string of characters between the
start of the current line and the point. This is a non-incremental search. By
default, this command is unbound.

history-search-backward ()
Search backward through the history for the string of characters between the
start of the current line and the point. This is a non-incremental search. By
default, this command is unbound.

yank-nth-arg (M-C-y)
Insert the first argument to the previous command (usually the second word on
the previous line) at point. With an argument n, insert the nth word from the
previous command (the words in the previous command begin with word 0). A
negative argument inserts the nth word from the end of the previous command.

yank-last-arg (M-. or M-_)
Insert last argument to the previous command (the last word of the previous
history entry). With an argument, behave exactly like yank-nth-arg. Succes-
sive calls to yank-last-arg move back through the history list, inserting the
last argument of each line in turn.

92 Bash Reference Manual

8.4.3 Commands For Changing Text

delete-char (C-d)
Delete the character at point. If point is at the beginning of the line, there
are no characters in the line, and the last character typed was not bound to
delete-char, then return eof.

backward-delete-char (Rubout)
Delete the character behind the cursor. A numeric argument means to kill the
characters instead of deleting them.

forward-backward-delete-char ()
Delete the character under the cursor, unless the cursor is at the end of the
line, in which case the character behind the cursor is deleted. By default, this
is not bound to a key.

quoted-insert (C-q or C-v)
Add the next character typed to the line verbatim. This is how to insert key
sequences like C-q, for example.

self-insert (a, b, A, 1, !, ...)
Insert yourself.

transpose-chars (C-t)
Drag the character before the cursor forward over the character at the cursor,
moving the cursor forward as well. If the insertion point is at the end of the
line, then this transposes the last two characters of the line. Negative arguments
have no effect.

transpose-words (M-t)
Drag the word before point past the word after point, moving point past that
word as well. If the insertion point is at the end of the line, this transposes the
last two words on the line.

upcase-word (M-u)
Uppercase the current (or following) word. With a negative argument, upper-
case the previous word, but do not move the cursor.

downcase-word (M-l)
Lowercase the current (or following) word. With a negative argument, lowercase
the previous word, but do not move the cursor.

capitalize-word (M-c)
Capitalize the current (or following) word. With a negative argument, capitalize
the previous word, but do not move the cursor.

8.4.4 Killing And Yanking

kill-line (C-k)
Kill the text from point to the end of the line.

Chapter 8: Command Line Editing 93

backward-kill-line (C-x Rubout)
Kill backward to the beginning of the line.

unix-line-discard (C-u)
Kill backward from the cursor to the beginning of the current line.

kill-whole-line ()
Kill all characters on the current line, no matter where point is. By default,
this is unbound.

kill-word (M-d)
Kill from point to the end of the current word, or if between words, to the end
of the next word. Word boundaries are the same as forward-word.

backward-kill-word (M-〈DEL〉)
Kill the word behind point. Word boundaries are the same as backward-word.

unix-word-rubout (C-w)
Kill the word behind point, using white space as a word boundary. The killed
text is saved on the kill-ring.

delete-horizontal-space ()
Delete all spaces and tabs around point. By default, this is unbound.

kill-region ()
Kill the text in the current region. By default, this command is unbound.

copy-region-as-kill ()
Copy the text in the region to the kill buffer, so it can be yanked right away.
By default, this command is unbound.

copy-backward-word ()
Copy the word before point to the kill buffer. The word boundaries are the
same as backward-word. By default, this command is unbound.

copy-forward-word ()
Copy the word following point to the kill buffer. The word boundaries are the
same as forward-word. By default, this command is unbound.

yank (C-y)
Yank the top of the kill ring into the buffer at point.

yank-pop (M-y)
Rotate the kill-ring, and yank the new top. You can only do this if the prior
command is yank or yank-pop.

8.4.5 Specifying Numeric Arguments

digit-argument (M-0, M-1, ... M--)
Add this digit to the argument already accumulating, or start a new argument.
M-- starts a negative argument.

94 Bash Reference Manual

universal-argument ()
This is another way to specify an argument. If this command is followed by one
or more digits, optionally with a leading minus sign, those digits define the ar-
gument. If the command is followed by digits, executing universal-argument
again ends the numeric argument, but is otherwise ignored. As a special case,
if this command is immediately followed by a character that is neither a digit
or minus sign, the argument count for the next command is multiplied by four.
The argument count is initially one, so executing this function the first time
makes the argument count four, a second time makes the argument count six-
teen, and so on. By default, this is not bound to a key.

8.4.6 Letting Readline Type For You

complete (〈TAB〉)
Attempt to perform completion on the text before point. The actual completion
performed is application-specific. Bash attempts completion treating the text
as a variable (if the text begins with ‘$’), username (if the text begins with
‘~’), hostname (if the text begins with ‘@’), or command (including aliases and
functions) in turn. If none of these produces a match, filename completion is
attempted.

possible-completions (M-?)
List the possible completions of the text before point.

insert-completions (M-*)
Insert all completions of the text before point that would have been generated
by possible-completions.

menu-complete ()
Similar to complete, but replaces the word to be completed with a single match
from the list of possible completions. Repeated execution of menu-complete
steps through the list of possible completions, inserting each match in turn.
At the end of the list of completions, the bell is rung (subject to the setting
of bell-style) and the original text is restored. An argument of n moves n
positions forward in the list of matches; a negative argument may be used to
move backward through the list. This command is intended to be bound to
〈TAB〉, but is unbound by default.

delete-char-or-list ()
Deletes the character under the cursor if not at the beginning or end of the line
(like delete-char). If at the end of the line, behaves identically to possible-
completions. This command is unbound by default.

complete-filename (M-/)
Attempt filename completion on the text before point.

possible-filename-completions (C-x /)
List the possible completions of the text before point, treating it as a filename.

Chapter 8: Command Line Editing 95

complete-username (M-~)
Attempt completion on the text before point, treating it as a username.

possible-username-completions (C-x ~)
List the possible completions of the text before point, treating it as a username.

complete-variable (M-$)
Attempt completion on the text before point, treating it as a shell variable.

possible-variable-completions (C-x $)
List the possible completions of the text before point, treating it as a shell
variable.

complete-hostname (M-@)
Attempt completion on the text before point, treating it as a hostname.

possible-hostname-completions (C-x @)
List the possible completions of the text before point, treating it as a hostname.

complete-command (M-!)
Attempt completion on the text before point, treating it as a command name.
Command completion attempts to match the text against aliases, reserved
words, shell functions, shell builtins, and finally executable filenames, in that
order.

possible-command-completions (C-x !)
List the possible completions of the text before point, treating it as a command
name.

dynamic-complete-history (M-〈TAB〉)
Attempt completion on the text before point, comparing the text against lines
from the history list for possible completion matches.

complete-into-braces (M-{)
Perform filename completion and insert the list of possible completions enclosed
within braces so the list is available to the shell (see Section 3.5.1 [Brace Ex-
pansion], page 15).

8.4.7 Keyboard Macros

start-kbd-macro (C-x ()
Begin saving the characters typed into the current keyboard macro.

end-kbd-macro (C-x))
Stop saving the characters typed into the current keyboard macro and save the
definition.

call-last-kbd-macro (C-x e)
Re-execute the last keyboard macro defined, by making the characters in the
macro appear as if typed at the keyboard.

96 Bash Reference Manual

8.4.8 Some Miscellaneous Commands

re-read-init-file (C-x C-r)
Read in the contents of the inputrc file, and incorporate any bindings or variable
assignments found there.

abort (C-g)
Abort the current editing command and ring the terminal’s bell (subject to the
setting of bell-style).

do-uppercase-version (M-a, M-b, M-x, ...)
If the metafied character x is lowercase, run the command that is bound to the
corresponding uppercase character.

prefix-meta (〈ESC〉)
Metafy the next character typed. This is for keyboards without a meta key.
Typing ‘〈ESC〉 f’ is equivalent to typing M-f.

undo (C-_ or C-x C-u)
Incremental undo, separately remembered for each line.

revert-line (M-r)
Undo all changes made to this line. This is like executing the undo command
enough times to get back to the beginning.

tilde-expand (M-&)
Perform tilde expansion on the current word.

set-mark (C-@)
Set the mark to the point. If a numeric argument is supplied, the mark is set
to that position.

exchange-point-and-mark (C-x C-x)
Swap the point with the mark. The current cursor position is set to the saved
position, and the old cursor position is saved as the mark.

character-search (C-])
A character is read and point is moved to the next occurrence of that character.
A negative count searches for previous occurrences.

character-search-backward (M-C-])
A character is read and point is moved to the previous occurrence of that
character. A negative count searches for subsequent occurrences.

insert-comment (M-#)
The value of the comment-begin variable is inserted at the beginning of the
current line, and the line is accepted as if a newline had been typed. The
default value of comment-begin causes this command to make the current line
a shell comment.

Chapter 8: Command Line Editing 97

dump-functions ()
Print all of the functions and their key bindings to the Readline output stream.
If a numeric argument is supplied, the output is formatted in such a way that
it can be made part of an inputrc file. This command is unbound by default.

dump-variables ()
Print all of the settable variables and their values to the Readline output stream.
If a numeric argument is supplied, the output is formatted in such a way that
it can be made part of an inputrc file. This command is unbound by default.

dump-macros ()
Print all of the Readline key sequences bound to macros and the strings they
output. If a numeric argument is supplied, the output is formatted in such a
way that it can be made part of an inputrc file. This command is unbound by
default.

glob-expand-word (C-x *)
The word before point is treated as a pattern for pathname expansion, and the
list of matching file names is inserted, replacing the word.

glob-list-expansions (C-x g)
The list of expansions that would have been generated by glob-expand-word
is displayed, and the line is redrawn.

display-shell-version (C-x C-v)
Display version information about the current instance of Bash.

shell-expand-line (M-C-e)
Expand the line as the shell does. This performs alias and history expansion
as well as all of the shell word expansions (see Section 3.5 [Shell Expansions],
page 15).

history-expand-line (M-^)
Perform history expansion on the current line.

magic-space ()
Perform history expansion on the current line and insert a space (see Section 9.3
[History Interaction], page 105).

alias-expand-line ()
Perform alias expansion on the current line (see Section 6.6 [Aliases], page 67).

history-and-alias-expand-line ()
Perform history and alias expansion on the current line.

insert-last-argument (M-. or M-_)
A synonym for yank-last-arg.

operate-and-get-next (C-o)
Accept the current line for execution and fetch the next line relative to the
current line from the history for editing. Any argument is ignored.

98 Bash Reference Manual

emacs-editing-mode (C-e)
When in vi editing mode, this causes a switch back to emacs editing mode, as
if the command ‘set -o emacs’ had been executed.

8.5 Readline vi Mode

While the Readline library does not have a full set of vi editing functions, it does contain
enough to allow simple editing of the line. The Readline vi mode behaves as specified in
the posix 1003.2 standard.

In order to switch interactively between emacs and vi editing modes, use the ‘set -o
emacs’ and ‘set -o vi’ commands (see Section 4.3 [The Set Builtin], page 46). The Readline
default is emacs mode.

When you enter a line in vi mode, you are already placed in ‘insertion’ mode, as if you
had typed an ‘i’. Pressing 〈ESC〉 switches you into ‘command’ mode, where you can edit the
text of the line with the standard vi movement keys, move to previous history lines with
‘k’ and subsequent lines with ‘j’, and so forth.

8.6 Programmable Completion

When word completion is attempted for an argument to a command for which a comple-
tion specification (a compspec) has been defined using the complete builtin (see Section 8.7
[Programmable Completion Builtins], page 99), the programmable completion facilities are
invoked.

First, the command name is identified. If a compspec has been defined for that command,
the compspec is used to generate the list of possible completions for the word. If the
command word is a full pathname, a compspec for the full pathname is searched for first.
If no compspec is found for the full pathname, an attempt is made to find a compspec for
the portion following the final slash.

Once a compspec has been found, it is used to generate the list of matching words. If
a compspec is not found, the default Bash completion described above (see Section 8.4.6
[Commands For Completion], page 94) is performed.

First, the actions specified by the compspec are used. Only matches which are prefixed
by the word being completed are returned. When the ‘-f’ or ‘-d’ option is used for filename
or directory name completion, the shell variable FIGNORE is used to filter the matches. See
Section 5.2 [Bash Variables], page 51, for a description of FIGNORE.

Any completions specified by a filename expansion pattern to the ‘-G’ option are gener-
ated next. The words generated by the pattern need not match the word being completed.
The GLOBIGNORE shell variable is not used to filter the matches, but the FIGNORE shell
variable is used.

Next, the string specified as the argument to the ‘-W’ option is considered. The string
is first split using the characters in the IFS special variable as delimiters. Shell quoting is
honored. Each word is then expanded using brace expansion, tilde expansion, parameter and
variable expansion, command substitution, arithmetic expansion, and pathname expansion,
as described above (see Section 3.5 [Shell Expansions], page 15). The results are split using
the rules described above (see Section 3.5.7 [Word Splitting], page 20). The results of the

Chapter 8: Command Line Editing 99

expansion are prefix-matched against the word being completed, and the matching words
become the possible completions.

After these matches have been generated, any shell function or command specified with
the ‘-F’ and ‘-C’ options is invoked. When the command or function is invoked, the COMP_
LINE and COMP_POINT variables are assigned values as described above (see Section 5.2 [Bash
Variables], page 51). If a shell function is being invoked, the COMP_WORDS and COMP_CWORD
variables are also set. When the function or command is invoked, the first argument is
the name of the command whose arguments are being completed, the second argument is
the word being completed, and the third argument is the word preceding the word being
completed on the current command line. No filtering of the generated completions against
the word being completed is performed; the function or command has complete freedom in
generating the matches.

Any function specified with ‘-F’ is invoked first. The function may use any of the shell
facilities, including the compgen builtin described below (see Section 8.7 [Programmable
Completion Builtins], page 99), to generate the matches. It must put the possible comple-
tions in the COMPREPLY array variable.

Next, any command specified with the ‘-C’ option is invoked in an environment equivalent
to command substitution. It should print a list of completions, one per line, to the standard
output. Backslash may be used to escape a newline, if necessary.

After all of the possible completions are generated, any filter specified with the ‘-X’
option is applied to the list. The filter is a pattern as used for pathname expansion; a ‘&’
in the pattern is replaced with the text of the word being completed. A literal ‘&’ may
be escaped with a backslash; the backslash is removed before attempting a match. Any
completion that matches the pattern will be removed from the list. A leading ‘!’ negates
the pattern; in this case any completion not matching the pattern will be removed.

Finally, any prefix and suffix specified with the ‘-P’ and ‘-S’ options are added to each
member of the completion list, and the result is returned to the Readline completion code
as the list of possible completions.

If the previously-applied actions do not generate any matches, and the ‘-o dirnames’ op-
tion was supplied to complete when the compspec was defined, directory name completion
is attempted.

By default, if a compspec is found, whatever it generates is returned to the completion
code as the full set of possible completions. The default Bash completions are not attempted,
and the Readline default of filename completion is disabled. If the ‘-o default’ option was
supplied to complete when the compspec was defined, Readline’s default completion will
be performed if the compspec generates no matches.

8.7 Programmable Completion Builtins

Two builtin commands are available to manipulate the programmable completion facil-
ities.

compgen

compgen [option] [word]

Generate possible completion matches for word according to the options, which
may be any option accepted by the complete builtin with the exception of ‘-p’

100 Bash Reference Manual

and ‘-r’, and write the matches to the standard output. When using the ‘-F’
or ‘-C’ options, the various shell variables set by the programmable completion
facilities, while available, will not have useful values.
The matches will be generated in the same way as if the programmable com-
pletion code had generated them directly from a completion specification with
the same flags. If word is specified, only those completions matching word will
be displayed.
The return value is true unless an invalid option is supplied, or no matches were
generated.

complete

complete [-abcdefgjkvu] [-o comp-option] [-A action] [-G globpat] [-
W wordlist]
[-P prefix] [-S suffix] [-X filterpat] [-F function]
[-C command] name [name ...]
complete -pr [name ...]

Specify how arguments to each name should be completed. If the ‘-p’ option
is supplied, or if no options are supplied, existing completion specifications are
printed in a way that allows them to be reused as input. The ‘-r’ option
removes a completion specification for each name, or, if no names are supplied,
all completion specifications.
The process of applying these completion specifications when word completion
is attempted is described above (see Section 8.6 [Programmable Completion],
page 98).
Other options, if specified, have the following meanings. The arguments to
the ‘-G’, ‘-W’, and ‘-X’ options (and, if necessary, the ‘-P’ and ‘-S’ options)
should be quoted to protect them from expansion before the complete builtin
is invoked.

-o comp-option
The comp-option controls several aspects of the compspec’s behav-
ior beyond the simple generation of completions. comp-option may
be one of:

default Use readline’s default completion if the compspec gen-
erates no matches.

dirnames Perform directory name completion if the compspec
generates no matches.

filenames
Tell Readline that the compspec generates filenames,
so it can perform any filename\-specific processing (like
adding a slash to directory names or suppressing trail-
ing spaces). This option is intended to be used with
shell functions specified with ‘-F’.

-A action The action may be one of the following to generate a list of possible
completions:

Chapter 8: Command Line Editing 101

alias Alias names. May also be specified as ‘-a’.

arrayvar Array variable names.

binding Readline key binding names (see Section 8.4 [Bindable
Readline Commands], page 90).

builtin Names of shell builtin commands. May also be specified
as ‘-b’.

command Command names. May also be specified as ‘-c’.

directory
Directory names. May also be specified as ‘-d’.

disabled Names of disabled shell builtins.

enabled Names of enabled shell builtins.

export Names of exported shell variables. May also be speci-
fied as ‘-e’.

file File names. May also be specified as ‘-f’.

function Names of shell functions.

group Group names. May also be specified as ‘-g’.

helptopic
Help topics as accepted by the help builtin (see Sec-
tion 4.2 [Bash Builtins], page 36).

hostname Hostnames, as taken from the file specified by
the HOSTFILE shell variable (see Section 5.2 [Bash
Variables], page 51).

job Job names, if job control is active. May also be speci-
fied as ‘-j’.

keyword Shell reserved words. May also be specified as ‘-k’.

running Names of running jobs, if job control is active.

setopt Valid arguments for the ‘-o’ option to the set builtin
(see Section 4.3 [The Set Builtin], page 46).

shopt Shell option names as accepted by the shopt builtin
(see Section 4.2 [Bash Builtins], page 36).

signal Signal names.

stopped Names of stopped jobs, if job control is active.

user User names. May also be specified as ‘-u’.

variable Names of all shell variables. May also be specified as
‘-v’.

-G globpat
The filename expansion pattern globpat is expanded to generate
the possible completions.

102 Bash Reference Manual

-W wordlist
The wordlist is split using the characters in the IFS special variable
as delimiters, and each resultant word is expanded. The possible
completions are the members of the resultant list which match the
word being completed.

-C command
command is executed in a subshell environment, and its output is
used as the possible completions.

-F function
The shell function function is executed in the current shell environ-
ment. When it finishes, the possible completions are retrieved from
the value of the COMPREPLY array variable.

-X filterpat
filterpat is a pattern as used for filename expansion. It is applied to
the list of possible completions generated by the preceding options
and arguments, and each completion matching filterpat is removed
from the list. A leading ‘!’ in filterpat negates the pattern; in this
case, any completion not matching filterpat is removed.

-P prefix prefix is added at the beginning of each possible completion after
all other options have been applied.

-S suffix suffix is appended to each possible completion after all other options
have been applied.

The return value is true unless an invalid option is supplied, an option other
than ‘-p’ or ‘-r’ is supplied without a name argument, an attempt is made to
remove a completion specification for a name for which no specification exists,
or an error occurs adding a completion specification.

Chapter 9: Using History Interactively 103

9 Using History Interactively

This chapter describes how to use the gnu History Library interactively, from a user’s
standpoint. It should be considered a user’s guide. For information on using the gnu
History Library in other programs, see the gnu Readline Library Manual.

9.1 Bash History Facilities

When the ‘-o history’ option to the set builtin is enabled (see Section 4.3 [The Set
Builtin], page 46), the shell provides access to the command history, the list of commands
previously typed. The value of the HISTSIZE shell variable is used as the number of com-
mands to save in a history list. The text of the last $HISTSIZE commands (default 500)
is saved. The shell stores each command in the history list prior to parameter and vari-
able expansion but after history expansion is performed, subject to the values of the shell
variables HISTIGNORE and HISTCONTROL.

When the shell starts up, the history is initialized from the file named by the HISTFILE
variable (default ‘~/.bash_history’). The file named by the value of HISTFILE is truncated,
if necessary, to contain no more than the number of lines specified by the value of the
HISTFILESIZE variable. When an interactive shell exits, the last $HISTSIZE lines are copied
from the history list to the file named by $HISTFILE. If the histappend shell option is set
(see Section 4.2 [Bash Builtins], page 36), the lines are appended to the history file, otherwise
the history file is overwritten. If HISTFILE is unset, or if the history file is unwritable, the
history is not saved. After saving the history, the history file is truncated to contain no
more than $HISTFILESIZE lines. If HISTFILESIZE is not set, no truncation is performed.

The builtin command fc may be used to list or edit and re-execute a portion of the history
list. The history builtin may be used to display or modify the history list and manipulate
the history file. When using command-line editing, search commands are available in each
editing mode that provide access to the history list (see Section 8.4.2 [Commands For
History], page 90).

The shell allows control over which commands are saved on the history list. The
HISTCONTROL and HISTIGNORE variables may be set to cause the shell to save only a subset
of the commands entered. The cmdhist shell option, if enabled, causes the shell to attempt
to save each line of a multi-line command in the same history entry, adding semicolons where
necessary to preserve syntactic correctness. The lithist shell option causes the shell to
save the command with embedded newlines instead of semicolons. The shopt builtin is used
to set these options. See Section 4.2 [Bash Builtins], page 36, for a description of shopt.

9.2 Bash History Builtins

Bash provides two builtin commands which manipulate the history list and history file.

fc

fc [-e ename] [-nlr] [first] [last]
fc -s [pat=rep] [command]

Fix Command. In the first form, a range of commands from first to last is
selected from the history list. Both first and last may be specified as a string

104 Bash Reference Manual

(to locate the most recent command beginning with that string) or as a number
(an index into the history list, where a negative number is used as an offset from
the current command number). If last is not specified it is set to first. If first is
not specified it is set to the previous command for editing and −16 for listing.
If the ‘-l’ flag is given, the commands are listed on standard output. The ‘-n’
flag suppresses the command numbers when listing. The ‘-r’ flag reverses the
order of the listing. Otherwise, the editor given by ename is invoked on a file
containing those commands. If ename is not given, the value of the following
variable expansion is used: ${FCEDIT:-${EDITOR:-vi}}. This says to use the
value of the FCEDIT variable if set, or the value of the EDITOR variable if that
is set, or vi if neither is set. When editing is complete, the edited commands
are echoed and executed.

In the second form, command is re-executed after each instance of pat in the
selected command is replaced by rep.

A useful alias to use with the fc command is r=’fc -s’, so that typing ‘r cc’
runs the last command beginning with cc and typing ‘r’ re-executes the last
command (see Section 6.6 [Aliases], page 67).

history

history [n]
history -c
history -d offset
history [-anrw] [filename]
history -ps arg

With no options, display the history list with line numbers. Lines prefixed with
a ‘*’ have been modified. An argument of n lists only the last n lines. Options,
if supplied, have the following meanings:

-c Clear the history list. This may be combined with the other options
to replace the history list completely.

-d offset Delete the history entry at position offset. offset should be specified
as it appears when the history is displayed.

-a Append the new history lines (history lines entered since the be-
ginning of the current Bash session) to the history file.

-n Append the history lines not already read from the history file to
the current history list. These are lines appended to the history file
since the beginning of the current Bash session.

-r Read the current history file and append its contents to the history
list.

-w Write out the current history to the history file.

-p Perform history substitution on the args and display the result on
the standard output, without storing the results in the history list.

-s The args are added to the end of the history list as a single entry.

Chapter 9: Using History Interactively 105

When any of the ‘-w’, ‘-r’, ‘-a’, or ‘-n’ options is used, if filename is given, then
it is used as the history file. If not, then the value of the HISTFILE variable is
used.

9.3 History Expansion

The History library provides a history expansion feature that is similar to the history
expansion provided by csh. This section describes the syntax used to manipulate the history
information.

History expansions introduce words from the history list into the input stream, making
it easy to repeat commands, insert the arguments to a previous command into the current
input line, or fix errors in previous commands quickly.

History expansion takes place in two parts. The first is to determine which line from the
history list should be used during substitution. The second is to select portions of that line
for inclusion into the current one. The line selected from the history is called the event, and
the portions of that line that are acted upon are called words. Various modifiers are available
to manipulate the selected words. The line is broken into words in the same fashion that
Bash does, so that several words surrounded by quotes are considered one word. History
expansions are introduced by the appearance of the history expansion character, which is
‘!’ by default. Only ‘\’ and ‘’’ may be used to escape the history expansion character.

Several shell options settable with the shopt builtin (see Section 4.2 [Bash Builtins],
page 36) may be used to tailor the behavior of history expansion. If the histverify shell
option is enabled, and Readline is being used, history substitutions are not immediately
passed to the shell parser. Instead, the expanded line is reloaded into the Readline editing
buffer for further modification. If Readline is being used, and the histreedit shell option
is enabled, a failed history expansion will be reloaded into the Readline editing buffer for
correction. The ‘-p’ option to the history builtin command may be used to see what
a history expansion will do before using it. The ‘-s’ option to the history builtin may
be used to add commands to the end of the history list without actually executing them,
so that they are available for subsequent recall. This is most useful in conjunction with
Readline.

The shell allows control of the various characters used by the history expansion mecha-
nism with the histchars variable.

9.3.1 Event Designators

An event designator is a reference to a command line entry in the history list.

! Start a history substitution, except when followed by a space, tab, the end of
the line, ‘=’ or ‘(’.

!n Refer to command line n.

!-n Refer to the command n lines back.

!! Refer to the previous command. This is a synonym for ‘!-1’.

!string Refer to the most recent command starting with string.

106 Bash Reference Manual

!?string[?]
Refer to the most recent command containing string. The trailing ‘?’ may be
omitted if the string is followed immediately by a newline.

^string1^string2^
Quick Substitution. Repeat the last command, replacing string1 with string2.
Equivalent to !!:s/string1/string2/.

!# The entire command line typed so far.

9.3.2 Word Designators

Word designators are used to select desired words from the event. A ‘:’ separates the
event specification from the word designator. It may be omitted if the word designator
begins with a ‘^’, ‘$’, ‘*’, ‘-’, or ‘%’. Words are numbered from the beginning of the line,
with the first word being denoted by 0 (zero). Words are inserted into the current line
separated by single spaces.

For example,

!! designates the preceding command. When you type this, the preceding com-
mand is repeated in toto.

!!:$ designates the last argument of the preceding command. This may be shortened
to !$.

!fi:2 designates the second argument of the most recent command starting with the
letters fi.

Here are the word designators:

0 (zero) The 0th word. For many applications, this is the command word.

n The nth word.

^ The first argument; that is, word 1.

$ The last argument.

% The word matched by the most recent ‘?string?’ search.

x-y A range of words; ‘-y ’ abbreviates ‘0-y ’.

* All of the words, except the 0th. This is a synonym for ‘1-$’. It is not an error
to use ‘*’ if there is just one word in the event; the empty string is returned in
that case.

x* Abbreviates ‘x-$’

x- Abbreviates ‘x-$’ like ‘x*’, but omits the last word.

If a word designator is supplied without an event specification, the previous command
is used as the event.

Chapter 9: Using History Interactively 107

9.3.3 Modifiers

After the optional word designator, you can add a sequence of one or more of the following
modifiers, each preceded by a ‘:’.

h Remove a trailing pathname component, leaving only the head.

t Remove all leading pathname components, leaving the tail.

r Remove a trailing suffix of the form ‘.suffix’, leaving the basename.

e Remove all but the trailing suffix.

p Print the new command but do not execute it.

q Quote the substituted words, escaping further substitutions.

x Quote the substituted words as with ‘q’, but break into words at spaces, tabs,
and newlines.

s/old/new/
Substitute new for the first occurrence of old in the event line. Any delimiter
may be used in place of ‘/’. The delimiter may be quoted in old and new with a
single backslash. If ‘&’ appears in new, it is replaced by old. A single backslash
will quote the ‘&’. The final delimiter is optional if it is the last character on
the input line.

& Repeat the previous substitution.

g Cause changes to be applied over the entire event line. Used in conjunction
with ‘s’, as in gs/old/new/, or with ‘&’.

108 Bash Reference Manual

Chapter 10: Installing Bash 109

10 Installing Bash

This chapter provides basic instructions for installing Bash on the various supported
platforms. The distribution supports the gnu operating systems, nearly every version of
Unix, and several non-Unix systems such as BeOS and Interix. Other independent ports
exist for ms-dos, os/2, Windows 95/98, and Windows nt.

10.1 Basic Installation

These are installation instructions for Bash.
The simplest way to compile Bash is:

1. cd to the directory containing the source code and type ‘./configure’ to configure
Bash for your system. If you’re using csh on an old version of System V, you might
need to type ‘sh ./configure’ instead to prevent csh from trying to execute configure
itself.
Running configure takes some time. While running, it prints messages telling which
features it is checking for.

2. Type ‘make’ to compile Bash and build the bashbug bug reporting script.
3. Optionally, type ‘make tests’ to run the Bash test suite.
4. Type ‘make install’ to install bash and bashbug. This will also install the manual

pages and Info file.

The configure shell script attempts to guess correct values for various system-dependent
variables used during compilation. It uses those values to create a ‘Makefile’ in each
directory of the package (the top directory, the ‘builtins’, ‘doc’, and ‘support’ directories,
each directory under ‘lib’, and several others). It also creates a ‘config.h’ file containing
system-dependent definitions. Finally, it creates a shell script named config.status that
you can run in the future to recreate the current configuration, a file ‘config.cache’ that
saves the results of its tests to speed up reconfiguring, and a file ‘config.log’ containing
compiler output (useful mainly for debugging configure). If at some point ‘config.cache’
contains results you don’t want to keep, you may remove or edit it.

To find out more about the options and arguments that the configure script under-
stands, type

bash-2.04$./configure --help

at the Bash prompt in your Bash source directory.
If you need to do unusual things to compile Bash, please try to figure out how

configure could check whether or not to do them, and mail diffs or instructions to
bash-maintainers@gnu.org so they can be considered for the next release.

The file ‘configure.in’ is used to create configure by a program called Autoconf. You
only need ‘configure.in’ if you want to change it or regenerate configure using a newer
version of Autoconf. If you do this, make sure you are using Autoconf version 2.50 or newer.

You can remove the program binaries and object files from the source code directory by
typing ‘make clean’. To also remove the files that configure created (so you can compile
Bash for a different kind of computer), type ‘make distclean’.

110 Bash Reference Manual

10.2 Compilers and Options

Some systems require unusual options for compilation or linking that the configure
script does not know about. You can give configure initial values for variables by setting
them in the environment. Using a Bourne-compatible shell, you can do that on the command
line like this:

CC=c89 CFLAGS=-O2 LIBS=-lposix ./configure

On systems that have the env program, you can do it like this:

env CPPFLAGS=-I/usr/local/include LDFLAGS=-s ./configure

The configuration process uses GCC to build Bash if it is available.

10.3 Compiling For Multiple Architectures

You can compile Bash for more than one kind of computer at the same time, by placing
the object files for each architecture in their own directory. To do this, you must use a
version of make that supports the VPATH variable, such as GNU make. cd to the directory
where you want the object files and executables to go and run the configure script from the
source directory. You may need to supply the ‘--srcdir=PATH’ argument to tell configure
where the source files are. configure automatically checks for the source code in the
directory that configure is in and in ‘..’.

If you have to use a make that does not supports the VPATH variable, you can compile Bash
for one architecture at a time in the source code directory. After you have installed Bash
for one architecture, use ‘make distclean’ before reconfiguring for another architecture.

Alternatively, if your system supports symbolic links, you can use the ‘support/mkclone’
script to create a build tree which has symbolic links back to each file in the source directory.
Here’s an example that creates a build directory in the current directory from a source
directory ‘/usr/gnu/src/bash-2.0’:

bash /usr/gnu/src/bash-2.0/support/mkclone -s /usr/gnu/src/bash-2.0 .

The mkclone script requires Bash, so you must have already built Bash for at least one
architecture before you can create build directories for other architectures.

10.4 Installation Names

By default, ‘make install’ will install into ‘/usr/local/bin’, ‘/usr/local/man’, etc.
You can specify an installation prefix other than ‘/usr/local’ by giving configure the
option ‘--prefix=PATH ’, or by specifying a value for the DESTDIR ‘make’ variable when
running ‘make install’.

You can specify separate installation prefixes for architecture-specific files and
architecture-independent files. If you give configure the option ‘--exec-prefix=PATH ’,
‘make install’ will use PATH as the prefix for installing programs and libraries.
Documentation and other data files will still use the regular prefix.

Chapter 10: Installing Bash 111

10.5 Specifying the System Type

There may be some features configure can not figure out automatically, but need to
determine by the type of host Bash will run on. Usually configure can figure that out,
but if it prints a message saying it can not guess the host type, give it the ‘--host=TYPE’
option. ‘TYPE’ can either be a short name for the system type, such as ‘sun4’, or a canonical
name with three fields: ‘CPU-COMPANY-SYSTEM’ (e.g., ‘i386-unknown-freebsd4.2’).

See the file ‘support/config.sub’ for the possible values of each field.

10.6 Sharing Defaults

If you want to set default values for configure scripts to share, you can create a site
shell script called config.site that gives default values for variables like CC, cache_
file, and prefix. configure looks for ‘PREFIX/share/config.site’ if it exists, then
‘PREFIX/etc/config.site’ if it exists. Or, you can set the CONFIG_SITE environment vari-
able to the location of the site script. A warning: the Bash configure looks for a site
script, but not all configure scripts do.

10.7 Operation Controls

configure recognizes the following options to control how it operates.

--cache-file=file
Use and save the results of the tests in file instead of ‘./config.cache’. Set
file to ‘/dev/null’ to disable caching, for debugging configure.

--help Print a summary of the options to configure, and exit.

--quiet
--silent
-q Do not print messages saying which checks are being made.

--srcdir=dir
Look for the Bash source code in directory dir. Usually configure can deter-
mine that directory automatically.

--version
Print the version of Autoconf used to generate the configure script, and exit.

configure also accepts some other, not widely used, boilerplate options. ‘configure
--help’ prints the complete list.

10.8 Optional Features

The Bash configure has a number of ‘--enable-feature’ options, where feature indi-
cates an optional part of Bash. There are also several ‘--with-package’ options, where
package is something like ‘bash-malloc’ or ‘purify’. To turn off the default use of a pack-
age, use ‘--without-package’. To configure Bash without a feature that is enabled by
default, use ‘--disable-feature’.

Here is a complete list of the ‘--enable-’ and ‘--with-’ options that the Bash configure
recognizes.

112 Bash Reference Manual

--with-afs
Define if you are using the Andrew File System from Transarc.

--with-bash-malloc
Use the Bash version of malloc in ‘lib/malloc/malloc.c’. This is not the
same malloc that appears in gnu libc, but an older version derived from the
4.2 bsd malloc. This malloc is very fast, but wastes some space on each
allocation. This option is enabled by default. The ‘NOTES’ file contains a list of
systems for which this should be turned off, and configure disables this option
automatically for a number of systems.

--with-curses
Use the curses library instead of the termcap library. This should be supplied
if your system has an inadequate or incomplete termcap database.

--with-gnu-malloc
A synonym for --with-bash-malloc.

--with-installed-readline[=PREFIX]
Define this to make Bash link with a locally-installed version of Readline rather
than the version in ‘lib/readline’. This works only with Readline 4.2 and
later versions. If PREFIX is yes or not supplied, configure uses the values of
the make variables includedir and libdir, which are subdirectories of prefix
by default, to find the installed version of Readline if it is not in the standard
system include and library directories. If PREFIX is no, Bash links with the
version in ‘lib/readline’. If PREFIX is set to any other value, configure
treats it as a directory pathname and looks for the installed version of Readline
in subdirectories of that directory (include files in PREFIX/include and the
library in PREFIX/lib).

--with-purify
Define this to use the Purify memory allocation checker from Rational Software.

--enable-minimal-config
This produces a shell with minimal features, close to the historical Bourne shell.

There are several ‘--enable-’ options that alter how Bash is compiled and linked, rather
than changing run-time features.

--enable-largefile
Enable support for large files (http://www.sas.com/standards/large_
file/x_open.20Mar96.html) if the operating system requires special compiler
options to build programs which can access large files.

--enable-profiling
This builds a Bash binary that produces profiling information to be processed
by gprof each time it is executed.

--enable-static-link
This causes Bash to be linked statically, if gcc is being used. This could be
used to build a version to use as root’s shell.

Chapter 10: Installing Bash 113

The ‘minimal-config’ option can be used to disable all of the following options, but it
is processed first, so individual options may be enabled using ‘enable-feature’.

All of the following options except for ‘disabled-builtins’ and ‘xpg-echo-default’
are enabled by default, unless the operating system does not provide the necessary support.

--enable-alias
Allow alias expansion and include the alias and unalias builtins (see Sec-
tion 6.6 [Aliases], page 67).

--enable-arith-for-command
Include support for the alternate form of the for command that behaves like
the C language for statement (see Section 3.2.4 [Looping Constructs], page 9).

--enable-array-variables
Include support for one-dimensional array shell variables (see Section 6.7 [Ar-
rays], page 68).

--enable-bang-history
Include support for csh-like history substitution (see Section 9.3 [History In-
teraction], page 105).

--enable-brace-expansion
Include csh-like brace expansion (b{a,b}c 7→ bac bbc). See Section 3.5.1
[Brace Expansion], page 15, for a complete description.

--enable-command-timing
Include support for recognizing time as a reserved word and for displaying
timing statistics for the pipeline following time (see Section 3.2.2 [Pipelines],
page 8). This allows pipelines as well as shell builtins and functions to be timed.

--enable-cond-command
Include support for the [[conditional command (see Section 3.2.5 [Conditional
Constructs], page 10).

--enable-directory-stack
Include support for a csh-like directory stack and the pushd, popd, and dirs
builtins (see Section 6.8 [The Directory Stack], page 69).

--enable-disabled-builtins
Allow builtin commands to be invoked via ‘builtin xxx’ even after xxx has
been disabled using ‘enable -n xxx’. See Section 4.2 [Bash Builtins], page 36,
for details of the builtin and enable builtin commands.

--enable-dparen-arithmetic
Include support for the ((...)) command (see Section 3.2.5 [Conditional Con-
structs], page 10).

--enable-extended-glob
Include support for the extended pattern matching features described above
under Section 3.5.8.1 [Pattern Matching], page 21.

--enable-help-builtin
Include the help builtin, which displays help on shell builtins and variables (see
Section 4.2 [Bash Builtins], page 36).

114 Bash Reference Manual

--enable-history
Include command history and the fc and history builtin commands (see Sec-
tion 9.1 [Bash History Facilities], page 103).

--enable-job-control
This enables the job control features (see Chapter 7 [Job Control], page 75), if
the operating system supports them.

--enable-net-redirections
This enables the special handling of filenames of the form /dev/tcp/host/port
and /dev/udp/host/port when used in redirections (see Section 3.6 [Redirec-
tions], page 22).

--enable-process-substitution
This enables process substitution (see Section 3.5.6 [Process Substitution],
page 20) if the operating system provides the necessary support.

--enable-prompt-string-decoding
Turn on the interpretation of a number of backslash-escaped characters in
the $PS1, $PS2, $PS3, and $PS4 prompt strings. See Section 6.9 [Printing a
Prompt], page 70, for a complete list of prompt string escape sequences.

--enable-progcomp
Enable the programmable completion facilities (see Section 8.6 [Programmable
Completion], page 98). If Readline is not enabled, this option has no effect.

--enable-readline
Include support for command-line editing and history with the Bash version of
the Readline library (see Chapter 8 [Command Line Editing], page 79).

--enable-restricted
Include support for a restricted shell. If this is enabled, Bash, when called
as rbash, enters a restricted mode. See Section 6.10 [The Restricted Shell],
page 71, for a description of restricted mode.

--enable-select
Include the select builtin, which allows the generation of simple menus (see
Section 3.2.5 [Conditional Constructs], page 10).

--enable-usg-echo-default
A synonym for --enable-xpg-echo-default.

--enable-xpg-echo-default
Make the echo builtin expand backslash-escaped characters by default, without
requiring the ‘-e’ option. This sets the default value of the xpg_echo shell
option to on, which makes the Bash echo behave more like the version specified
in the Single Unix Specification, version 2. See Section 4.2 [Bash Builtins],
page 36, for a description of the escape sequences that echo recognizes.

The file ‘config-top.h’ contains C Preprocessor ‘#define’ statements for options which
are not settable from configure. Some of these are not meant to be changed; beware of
the consequences if you do. Read the comments associated with each definition for more
information about its effect.

Appendix A: Reporting Bugs 115

Appendix A Reporting Bugs

Please report all bugs you find in Bash. But first, you should make sure that it really is
a bug, and that it appears in the latest version of Bash that you have.

Once you have determined that a bug actually exists, use the bashbug command to
submit a bug report. If you have a fix, you are encouraged to mail that as well! Suggestions
and ‘philosophical’ bug reports may be mailed to bug-bash@gnu.org or posted to the Usenet
newsgroup gnu.bash.bug.

All bug reports should include:
• The version number of Bash.
• The hardware and operating system.
• The compiler used to compile Bash.
• A description of the bug behaviour.
• A short script or ‘recipe’ which exercises the bug and may be used to reproduce it.

bashbug inserts the first three items automatically into the template it provides for filing a
bug report.

Please send all reports concerning this manual to chet@po.CWRU.Edu.

116 Bash Reference Manual

Appendix B: Major Differences From The Bourne Shell 117

Appendix B Major Differences From The Bourne
Shell

Bash implements essentially the same grammar, parameter and variable expansion, redi-
rection, and quoting as the Bourne Shell. Bash uses the posix 1003.2 standard as the spec-
ification of how these features are to be implemented. There are some differences between
the traditional Bourne shell and Bash; this section quickly details the differences of signif-
icance. A number of these differences are explained in greater depth in previous sections.
This section uses the version of sh included in SVR4.2 as the baseline reference.

• Bash is posix-conformant, even where the posix specification differs from traditional
sh behavior (see Section 6.11 [Bash POSIX Mode], page 72).

• Bash has multi-character invocation options (see Section 6.1 [Invoking Bash], page 59).
• Bash has command-line editing (see Chapter 8 [Command Line Editing], page 79) and

the bind builtin.
• Bash provides a programmable word completion mechanism (see Section 8.6 [Pro-

grammable Completion], page 98), and two builtin commands, complete and compgen,
to manipulate it.

• Bash has command history (see Section 9.1 [Bash History Facilities], page 103) and the
history and fc builtins to manipulate it.

• Bash implements csh-like history expansion (see Section 9.3 [History Interaction],
page 105).

• Bash has one-dimensional array variables (see Section 6.7 [Arrays], page 68), and the
appropriate variable expansions and assignment syntax to use them. Several of the
Bash builtins take options to act on arrays. Bash provides a number of built-in array
variables.

• The $’...’ quoting syntax, which expands ANSI-C backslash-escaped characters in
the text between the single quotes, is supported (see Section 3.1.2.4 [ANSI-C Quoting],
page 6).

• Bash supports the $"..." quoting syntax to do locale-specific translation of
the characters between the double quotes. The ‘-D’, ‘--dump-strings’, and
‘--dump-po-strings’ invocation options list the translatable strings found in a script
(see Section 3.1.2.5 [Locale Translation], page 7).

• Bash implements the ! keyword to negate the return value of a pipeline (see Sec-
tion 3.2.2 [Pipelines], page 8). Very useful when an if statement needs to act only if
a test fails.

• Bash has the time reserved word and command timing (see Section 3.2.2 [Pipelines],
page 8). The display of the timing statistics may be controlled with the TIMEFORMAT
variable.

• Bash implements the for ((expr1 ; expr2 ; expr3)) arithmetic for command, simi-
lar to the C language (see Section 3.2.4 [Looping Constructs], page 9).

• Bash includes the select compound command, which allows the generation of simple
menus (see Section 3.2.5 [Conditional Constructs], page 10).

• Bash includes the [[compound command, which makes conditional testing part of the
shell grammar (see Section 3.2.5 [Conditional Constructs], page 10).

118 Bash Reference Manual

• Bash includes brace expansion (see Section 3.5.1 [Brace Expansion], page 15) and tilde
expansion (see Section 3.5.2 [Tilde Expansion], page 16).

• Bash implements command aliases and the alias and unalias builtins (see Section 6.6
[Aliases], page 67).

• Bash provides shell arithmetic, the ((compound command (see Section 3.2.5 [Condi-
tional Constructs], page 10), and arithmetic expansion (see Section 6.5 [Shell Arith-
metic], page 66).

• Variables present in the shell’s initial environment are automatically exported to child
processes. The Bourne shell does not normally do this unless the variables are explicitly
marked using the export command.

• Bash includes the posix pattern removal ‘%’, ‘#’, ‘%%’ and ‘##’ expansions to remove
leading or trailing substrings from variable values (see Section 3.5.3 [Shell Parameter
Expansion], page 17).

• The expansion ${#xx}, which returns the length of ${xx}, is supported (see Sec-
tion 3.5.3 [Shell Parameter Expansion], page 17).

• The expansion ${var:offset[:length]}, which expands to the substring of var’s value
of length length, beginning at offset, is present (see Section 3.5.3 [Shell Parameter
Expansion], page 17).

• The expansion ${var/[/]pattern[/replacement]}, which matches pattern and replaces
it with replacement in the value of var, is available (see Section 3.5.3 [Shell Parameter
Expansion], page 17).

• The expansion ${!prefix}* expansion, which expands to the names of all shell vari-
ables whose names begin with prefix, is available (see Section 3.5.3 [Shell Parameter
Expansion], page 17).

• Bash has indirect variable expansion using ${!word} (see Section 3.5.3 [Shell Parameter
Expansion], page 17).

• Bash can expand positional parameters beyond $9 using ${num}.
• The posix $() form of command substitution is implemented (see Section 3.5.4 [Com-

mand Substitution], page 19), and preferred to the Bourne shell’s ‘‘ (which is also
implemented for backwards compatibility).

• Bash has process substitution (see Section 3.5.6 [Process Substitution], page 20).
• Bash automatically assigns variables that provide information about the current

user (UID, EUID, and GROUPS), the current host (HOSTTYPE, OSTYPE, MACHTYPE, and
HOSTNAME), and the instance of Bash that is running (BASH, BASH_VERSION, and
BASH_VERSINFO). See Section 5.2 [Bash Variables], page 51, for details.

• The IFS variable is used to split only the results of expansion, not all words (see
Section 3.5.7 [Word Splitting], page 20). This closes a longstanding shell security hole.

• Bash implements the full set of posix 1003.2 filename expansion operators, including
character classes, equivalence classes, and collating symbols (see Section 3.5.8 [Filename
Expansion], page 20).

• Bash implements extended pattern matching features when the extglob shell option
is enabled (see Section 3.5.8.1 [Pattern Matching], page 21).

• It is possible to have a variable and a function with the same name; sh does not separate
the two name spaces.

Appendix B: Major Differences From The Bourne Shell 119

• Bash functions are permitted to have local variables using the local builtin, and thus
useful recursive functions may be written (see Section 4.2 [Bash Builtins], page 36).

• Variable assignments preceding commands affect only that command, even builtins and
functions (see Section 3.7.4 [Environment], page 27). In sh, all variable assignments
preceding commands are global unless the command is executed from the file system.

• Bash performs filename expansion on filenames specified as operands to input and
output redirection operators (see Section 3.6 [Redirections], page 22).

• Bash contains the ‘<>’ redirection operator, allowing a file to be opened for both read-
ing and writing, and the ‘&>’ redirection operator, for directing standard output and
standard error to the same file (see Section 3.6 [Redirections], page 22).

• Bash treats a number of filenames specially when they are used in redirection operators
(see Section 3.6 [Redirections], page 22).

• Bash can open network connections to arbitrary machines and services with the redi-
rection operators (see Section 3.6 [Redirections], page 22).

• The noclobber option is available to avoid overwriting existing files with output redi-
rection (see Section 4.3 [The Set Builtin], page 46). The ‘>|’ redirection operator may
be used to override noclobber.

• The Bash cd and pwd builtins (see Section 4.1 [Bourne Shell Builtins], page 31) each
take ‘-L’ and ‘-P’ options to switch between logical and physical modes.

• Bash allows a function to override a builtin with the same name, and provides access to
that builtin’s functionality within the function via the builtin and command builtins
(see Section 4.2 [Bash Builtins], page 36).

• The command builtin allows selective disabling of functions when command lookup is
performed (see Section 4.2 [Bash Builtins], page 36).

• Individual builtins may be enabled or disabled using the enable builtin (see Section 4.2
[Bash Builtins], page 36).

• The Bash exec builtin takes additional options that allow users to control the contents
of the environment passed to the executed command, and what the zeroth argument
to the command is to be (see Section 4.1 [Bourne Shell Builtins], page 31).

• Shell functions may be exported to children via the environment using export -f (see
Section 3.3 [Shell Functions], page 12).

• The Bash export, readonly, and declare builtins can take a ‘-f’ option to act on
shell functions, a ‘-p’ option to display variables with various attributes set in a format
that can be used as shell input, a ‘-n’ option to remove various variable attributes, and
‘name=value’ arguments to set variable attributes and values simultaneously.

• The Bash hash builtin allows a name to be associated with an arbitrary filename,
even when that filename cannot be found by searching the $PATH, using ‘hash -p’ (see
Section 4.1 [Bourne Shell Builtins], page 31).

• Bash includes a help builtin for quick reference to shell facilities (see Section 4.2 [Bash
Builtins], page 36).

• The printf builtin is available to display formatted output (see Section 4.2 [Bash
Builtins], page 36).

• The Bash read builtin (see Section 4.2 [Bash Builtins], page 36) will read a line ending
in ‘\’ with the ‘-r’ option, and will use the REPLY variable as a default if no non-option

120 Bash Reference Manual

arguments are supplied. The Bash read builtin also accepts a prompt string with the
‘-p’ option and will use Readline to obtain the line when given the ‘-e’ option. The
read builtin also has additional options to control input: the ‘-s’ option will turn off
echoing of input characters as they are read, the ‘-t’ option will allow read to time
out if input does not arrive within a specified number of seconds, the ‘-n’ option will
allow reading only a specified number of characters rather than a full line, and the ‘-d’
option will read until a particular character rather than newline.

• The return builtin may be used to abort execution of scripts executed with the . or
source builtins (see Section 4.1 [Bourne Shell Builtins], page 31).

• Bash includes the shopt builtin, for finer control of shell optional capabilities (see
Section 4.2 [Bash Builtins], page 36), and allows these options to be set and unset at
shell invocation (see Section 6.1 [Invoking Bash], page 59).

• Bash has much more optional behavior controllable with the set builtin (see Section 4.3
[The Set Builtin], page 46).

• The test builtin (see Section 4.1 [Bourne Shell Builtins], page 31) is slightly different,
as it implements the posix algorithm, which specifies the behavior based on the number
of arguments.

• The trap builtin (see Section 4.1 [Bourne Shell Builtins], page 31) allows a DEBUG
pseudo-signal specification, similar to EXIT. Commands specified with a DEBUG trap
are executed after every simple command. The DEBUG trap is not inherited by shell
functions.
The trap builtin (see Section 4.1 [Bourne Shell Builtins], page 31) allows an ERR pseudo-
signal specification, similar to EXIT and DEBUG. Commands specified with an ERR trap
are executed after a simple command fails, with a few exceptions. The ERR trap is not
inherited by shell functions.

• The Bash type builtin is more extensive and gives more information about the names
it finds (see Section 4.2 [Bash Builtins], page 36).

• The Bash umask builtin permits a ‘-p’ option to cause the output to be displayed in
the form of a umask command that may be reused as input (see Section 4.1 [Bourne
Shell Builtins], page 31).

• Bash implements a csh-like directory stack, and provides the pushd, popd, and dirs
builtins to manipulate it (see Section 6.8 [The Directory Stack], page 69). Bash also
makes the directory stack visible as the value of the DIRSTACK shell variable.

• Bash interprets special backslash-escaped characters in the prompt strings when inter-
active (see Section 6.9 [Printing a Prompt], page 70).

• The Bash restricted mode is more useful (see Section 6.10 [The Restricted Shell],
page 71); the SVR4.2 shell restricted mode is too limited.

• The disown builtin can remove a job from the internal shell job table (see Section 7.2
[Job Control Builtins], page 76) or suppress the sending of SIGHUP to a job when the
shell exits as the result of a SIGHUP.

• The SVR4.2 shell has two privilege-related builtins (mldmode and priv) not present in
Bash.

• Bash does not have the stop or newgrp builtins.
• Bash does not use the SHACCT variable or perform shell accounting.

Appendix B: Major Differences From The Bourne Shell 121

• The SVR4.2 sh uses a TIMEOUT variable like Bash uses TMOUT.

More features unique to Bash may be found in Chapter 6 [Bash Features], page 59.

B.1 Implementation Differences From The SVR4.2 Shell

Since Bash is a completely new implementation, it does not suffer from many of the
limitations of the SVR4.2 shell. For instance:
• Bash does not fork a subshell when redirecting into or out of a shell control structure

such as an if or while statement.
• Bash does not allow unbalanced quotes. The SVR4.2 shell will silently insert a needed

closing quote at EOF under certain circumstances. This can be the cause of some hard-
to-find errors.

• The SVR4.2 shell uses a baroque memory management scheme based on trapping
SIGSEGV. If the shell is started from a process with SIGSEGV blocked (e.g., by using
the system() C library function call), it misbehaves badly.

• In a questionable attempt at security, the SVR4.2 shell, when invoked without the ‘-p’
option, will alter its real and effective uid and gid if they are less than some magic
threshold value, commonly 100. This can lead to unexpected results.

• The SVR4.2 shell does not allow users to trap SIGSEGV, SIGALRM, or SIGCHLD.
• The SVR4.2 shell does not allow the IFS, MAILCHECK, PATH, PS1, or PS2 variables to

be unset.
• The SVR4.2 shell treats ‘^’ as the undocumented equivalent of ‘|’.
• Bash allows multiple option arguments when it is invoked (-x -v); the SVR4.2 shell

allows only one option argument (-xv). In fact, some versions of the shell dump core
if the second argument begins with a ‘-’.

• The SVR4.2 shell exits a script if any builtin fails; Bash exits a script only if one of
the posix 1003.2 special builtins fails, and only for certain failures, as enumerated in
the posix 1003.2 standard.

• The SVR4.2 shell behaves differently when invoked as jsh (it turns on job control).

122 Bash Reference Manual

Index of Shell Builtin Commands 123

Index of Shell Builtin Commands

.

. 31

:
: . 31

[
[. 34

A
alias . 37

B
bg . 76

bind . 37

break . 31

builtin . 38

C
cd . 31

command . 38

compgen . 99

complete . 100

continue . 32

D
declare . 38

dirs . 69

disown . 77

E
echo . 39

enable . 39

eval . 32

exec . 32

exit . 32

export . 32

F
fc . 103

fg . 76

G
getopts . 32

H
hash . 33
help . 40
history . 104

J
jobs . 76

K
kill . 77

L
let . 40
local . 40
logout . 40

P
popd . 69
printf . 41
pushd . 70
pwd . 33

R
read . 41
readonly . 34
return . 34

S
set . 46
shift . 34
shopt . 42
source . 45
suspend . 77

T
test . 34
times . 35
trap . 35
type . 45
typeset . 45

124 Bash Reference Manual

U

ulimit . 45

umask . 36

unalias . 46

unset . 36

W
wait . 77

Index of Shell Reserved Words 125

Index of Shell Reserved Words

!
! . 8

[
[[. 11

]
]] . 11

{

{ . 12

}

} . 12

C
case . 10

D
do . 9

done . 9

E
elif . 10
else . 10
esac . 10

F
fi . 10
for . 9
function . 12

I
if . 10
in . 10

S
select . 11

T
then . 10
time . 8

U
until . 9

W
while . 9

126 Bash Reference Manual

Parameter and Variable Index 127

Parameter and Variable Index

!
! . 14

#
. 14

$
$. 14

*
* . 14

-
- . 14

?
? . 14

@
@ . 14

_ . 15

0
0 . 14

A
auto_resume . 78

B
BASH . 51

BASH_ENV . 52

BASH_VERSINFO . 52

BASH_VERSION . 52

bell-style . 83

C
CDPATH . 51

COLUMNS . 52

comment-begin . 83

COMP_CWORD . 52

COMP_LINE . 52

COMP_POINT . 52

COMP_WORDS . 52

completion-query-items . 83

COMPREPLY . 53

convert-meta . 83

D
DIRSTACK . 53

disable-completion . 83

E
editing-mode . 83

enable-keypad . 83

EUID . 53

expand-tilde . 84

F
FCEDIT . 53

FIGNORE . 53

FUNCNAME . 53

G
GLOBIGNORE . 53

GROUPS . 53

H
histchars . 53

HISTCMD . 54

HISTCONTROL . 54

HISTFILE . 54

HISTFILESIZE . 54

HISTIGNORE . 54

history-preserve-point . 84

HISTSIZE . 54

HOME . 51

horizontal-scroll-mode . 84

HOSTFILE . 54

HOSTNAME . 55

HOSTTYPE . 55

128 Bash Reference Manual

I
IFS . 51
IGNOREEOF . 55
input-meta . 84
INPUTRC . 55
isearch-terminators . 84

K
keymap . 84

L
LANG . 55
LC_ALL . 55
LC_COLLATE . 55
LC_CTYPE . 55
LC_MESSAGES . 7, 55
LC_NUMERIC . 55
LINENO . 55
LINES . 55

M
MACHTYPE . 55
MAIL . 51
MAILCHECK . 55
MAILPATH . 51
mark-modified-lines . 84
match-hidden-files . 84
meta-flag . 84

O
OLDPWD . 56
OPTARG . 51
OPTERR . 56
OPTIND . 51
OSTYPE . 56
output-meta . 85

P
PATH . 51

PIPESTATUS . 56

POSIXLY_CORRECT . 56

PPID . 56

PROMPT_COMMAND . 56

PS1 . 51

PS2 . 51

PS3 . 56

PS4 . 56

PWD . 56

R
RANDOM . 56

REPLY . 56

S
SECONDS . 56

SHELLOPTS . 56

SHLVL . 57

show-all-if-ambiguous . 85

T
TEXTDOMAIN . 7

TEXTDOMAINDIR . 7

TIMEFORMAT . 57

TMOUT . 57

U
UID . 57

V
visible-stats . 85

Function Index 129

Function Index

A
abort (C-g) . 96

accept-line (Newline or Return) 90

alias-expand-line () . 97

B
backward-char (C-b) . 90

backward-delete-char (Rubout) 92

backward-kill-line (C-x Rubout) 93

backward-kill-word (M-〈DEL〉) 93

backward-word (M-b) . 90

beginning-of-history (M-<) 91

beginning-of-line (C-a) . 90

C
call-last-kbd-macro (C-x e) 95

capitalize-word (M-c) . 92

character-search (C-]) . 96

character-search-backward (M-C-]) 96

clear-screen (C-l) . 90

complete (〈TAB〉) . 94

complete-command (M-!) . 95

complete-filename (M-/) . 94

complete-hostname (M-@) . 95

complete-into-braces (M-{) 95

complete-username (M-~) . 95

complete-variable (M-$) . 95

copy-backward-word () . 93

copy-forward-word () . 93

copy-region-as-kill () . 93

D
delete-char (C-d) . 92

delete-char-or-list () . 94

delete-horizontal-space () 93

digit-argument (M-0, M-1, ... M--) 93

display-shell-version (C-x C-v) 97

do-uppercase-version (M-a, M-b, M-x, ...)

. 96

downcase-word (M-l) . 92

dump-functions () . 97

dump-macros () . 97

dump-variables () . 97

dynamic-complete-history (M-〈TAB〉) 95

E
emacs-editing-mode (C-e) 98
end-kbd-macro (C-x)) . 95
end-of-history (M->) . 91
end-of-line (C-e) . 90
exchange-point-and-mark (C-x C-x) 96

F
forward-backward-delete-char () 92
forward-char (C-f) . 90
forward-search-history (C-s) 91
forward-word (M-f) . 90

G
glob-expand-word (C-x *) 97
glob-list-expansions (C-x g) 97

H
history-and-alias-expand-line () 97
history-expand-line (M-^) 97
history-search-backward () 91
history-search-forward () 91

I
insert-comment (M-#) . 96
insert-completions (M-*) 94
insert-last-argument (M-. or M-_) 97

K
kill-line (C-k) . 92
kill-region () . 93
kill-whole-line () . 93
kill-word (M-d) . 93

M
magic-space () . 97
menu-complete () . 94

N
next-history (C-n) . 91
non-incremental-forward-search-history (M-n)

. 91
non-incremental-reverse-search-history (M-p)

. 91

130 Bash Reference Manual

O
operate-and-get-next (C-o) 97

P
possible-command-completions (C-x !) 95

possible-completions (M-?) 94

possible-filename-completions (C-x /) 94

possible-hostname-completions (C-x @) 95

possible-username-completions (C-x ~) 95

possible-variable-completions (C-x $) 95

prefix-meta (〈ESC〉) . 96

previous-history (C-p) . 90

Q
quoted-insert (C-q or C-v) 92

R
re-read-init-file (C-x C-r) 96

redraw-current-line () . 90

reverse-search-history (C-r) 91

revert-line (M-r) . 96

S
self-insert (a, b, A, 1, !, ...) 92
set-mark (C-@) . 96
shell-expand-line (M-C-e) 97
start-kbd-macro (C-x () . 95

T
tilde-expand (M-&) . 96
transpose-chars (C-t) . 92
transpose-words (M-t) . 92

U
undo (C-_ or C-x C-u) . 96
universal-argument () . 94
unix-line-discard (C-u) . 93
unix-word-rubout (C-w) . 93
upcase-word (M-u) . 92

Y
yank (C-y) . 93
yank-last-arg (M-. or M-_) 91
yank-nth-arg (M-C-y) . 91
yank-pop (M-y) . 93

Concept Index 131

Concept Index

A
alias expansion . 67
arithmetic evaluation . 66
arithmetic expansion . 19
arithmetic, shell . 66
arrays. 68

B
background . 75
Bash configuration . 109
Bash installation. 109
Bourne shell . 5
brace expansion . 15
builtin . 3

C
command editing . 79
command execution . 26
command expansion . 25
command history . 103
command search . 26
command substitution . 19
command timing . 8
commands, conditional . 10
commands, grouping . 12
commands, lists. 8
commands, looping . 9
commands, pipelines . 8
commands, shell . 7
commands, simple . 8
comments, shell . 7
completion builtins . 99
configuration . 109
control operator . 3

D
directory stack . 69

E
editing command lines . 79
environment . 27
evaluation, arithmetic . 66
event designators . 105
execution environment . 26
exit status . 3, 28
expansion . 15
expansion, arithmetic . 19

expansion, brace . 15

expansion, filename . 20

expansion, parameter . 17

expansion, pathname . 20

expansion, tilde . 16

expressions, arithmetic . 66

expressions, conditional . 64

F
field . 3

filename . 3

filename expansion . 20

foreground . 75

functions, shell . 12

H
history builtins . 103

history events . 105

history expansion . 105

history list . 103

History, how to use . 102

I
identifier . 3

initialization file, readline . 82

installation . 109

interaction, readline . 79

interactive shell . 60, 63

internationalization . 7

J
job . 3

job control . 3, 75

K
kill ring . 81

killing text . 80

L
localization . 7

login shell . 60

132 Bash Reference Manual

M
matching, pattern . 21

metacharacter . 3

N
name . 3

native languages . 7

notation, readline . 79

O
operator, shell . 3

P
parameter expansion . 17

parameters . 13

parameters, positional . 14

parameters, special . 14

pathname expansion . 20

pattern matching . 21

pipeline . 8

POSIX . 3

POSIX Mode . 72

process group . 3

process group ID . 3

process substitution . 20

programmable completion . 98

prompting . 70

Q
quoting . 6

quoting, ANSI . 6

R
Readline, how to use . 78
redirection . 22
reserved word . 3
restricted shell . 71
return status . 3

S
shell arithmetic . 66
shell function . 12
shell script . 29
shell variable . 13
shell, interactive . 63
signal . 4
signal handling . 28
special builtin . 4, 49
startup files . 61
suspending jobs . 75

T
tilde expansion . 16
token . 4
translation, native languages 7

V
variable, shell . 13
variables, readline . 83

W
word . 4
word splitting . 20

Y
yanking text . 80

i

Table of Contents

1 Introduction . 1
1.1 What is Bash? . 1
1.2 What is a shell? . 1

2 Definitions . 3

3 Basic Shell Features. 5
3.1 Shell Syntax . 5

3.1.1 Shell Operation . 5
3.1.2 Quoting . 6

3.1.2.1 Escape Character . 6
3.1.2.2 Single Quotes . 6
3.1.2.3 Double Quotes . 6
3.1.2.4 ANSI-C Quoting . 6
3.1.2.5 Locale-Specific Translation 7

3.1.3 Comments . 7
3.2 Shell Commands . 7

3.2.1 Simple Commands . 8
3.2.2 Pipelines . 8
3.2.3 Lists of Commands . 8
3.2.4 Looping Constructs . 9
3.2.5 Conditional Constructs. 10
3.2.6 Grouping Commands . 12

3.3 Shell Functions. 12
3.4 Shell Parameters . 13

3.4.1 Positional Parameters . 14
3.4.2 Special Parameters . 14

3.5 Shell Expansions . 15
3.5.1 Brace Expansion . 15
3.5.2 Tilde Expansion . 16
3.5.3 Shell Parameter Expansion . 17
3.5.4 Command Substitution . 19
3.5.5 Arithmetic Expansion . 19
3.5.6 Process Substitution . 20
3.5.7 Word Splitting . 20
3.5.8 Filename Expansion . 20

3.5.8.1 Pattern Matching . 21
3.5.9 Quote Removal . 22

3.6 Redirections . 22
3.6.1 Redirecting Input . 23
3.6.2 Redirecting Output . 23
3.6.3 Appending Redirected Output 24

ii Bash Reference Manual

3.6.4 Redirecting Standard Output and Standard Error
. 24

3.6.5 Here Documents . 24
3.6.6 Duplicating File Descriptors . 24
3.6.7 Opening File Descriptors for Reading and Writing

. 25
3.7 Executing Commands . 25

3.7.1 Simple Command Expansion 25
3.7.2 Command Search and Execution 26
3.7.3 Command Execution Environment 26
3.7.4 Environment . 27
3.7.5 Exit Status. 28
3.7.6 Signals . 28

3.8 Shell Scripts . 29

4 Shell Builtin Commands 31
4.1 Bourne Shell Builtins . 31
4.2 Bash Builtin Commands . 36
4.3 The Set Builtin . 46
4.4 Special Builtins . 49

5 Shell Variables. 51
5.1 Bourne Shell Variables . 51
5.2 Bash Variables . 51

6 Bash Features . 59
6.1 Invoking Bash . 59
6.2 Bash Startup Files . 61
6.3 Interactive Shells . 63

6.3.1 What is an Interactive Shell? 63
6.3.2 Is this Shell Interactive? . 63
6.3.3 Interactive Shell Behavior . 63

6.4 Bash Conditional Expressions . 64
6.5 Shell Arithmetic . 66
6.6 Aliases . 67
6.7 Arrays . 68
6.8 The Directory Stack . 69

6.8.1 Directory Stack Builtins . 69
6.9 Controlling the Prompt . 70
6.10 The Restricted Shell . 71
6.11 Bash POSIX Mode . 72

7 Job Control . 75
7.1 Job Control Basics . 75
7.2 Job Control Builtins . 76
7.3 Job Control Variables . 78

iii

8 Command Line Editing 79
8.1 Introduction to Line Editing . 79
8.2 Readline Interaction . 79

8.2.1 Readline Bare Essentials . 79
8.2.2 Readline Movement Commands 80
8.2.3 Readline Killing Commands . 80
8.2.4 Readline Arguments . 81
8.2.5 Searching for Commands in the History 81

8.3 Readline Init File . 82
8.3.1 Readline Init File Syntax . 82
8.3.2 Conditional Init Constructs . 87
8.3.3 Sample Init File . 87

8.4 Bindable Readline Commands . 90
8.4.1 Commands For Moving . 90
8.4.2 Commands For Manipulating The History 90
8.4.3 Commands For Changing Text 92
8.4.4 Killing And Yanking . 92
8.4.5 Specifying Numeric Arguments 93
8.4.6 Letting Readline Type For You 94
8.4.7 Keyboard Macros . 95
8.4.8 Some Miscellaneous Commands 96

8.5 Readline vi Mode . 98
8.6 Programmable Completion . 98
8.7 Programmable Completion Builtins . 99

9 Using History Interactively 103
9.1 Bash History Facilities . 103
9.2 Bash History Builtins. 103
9.3 History Expansion . 105

9.3.1 Event Designators . 105
9.3.2 Word Designators . 106
9.3.3 Modifiers . 107

10 Installing Bash . 109
10.1 Basic Installation . 109
10.2 Compilers and Options . 110
10.3 Compiling For Multiple Architectures 110
10.4 Installation Names . 110
10.5 Specifying the System Type . 111
10.6 Sharing Defaults . 111
10.7 Operation Controls . 111
10.8 Optional Features . 111

Appendix A Reporting Bugs 115

iv Bash Reference Manual

Appendix B Major Differences From The Bourne
Shell . 117
B.1 Implementation Differences From The SVR4.2 Shell 121

Index of Shell Builtin Commands 123

Index of Shell Reserved Words 125

Parameter and Variable Index 127

Function Index . 129

Concept Index . 131

