FreeBSD #######

FreeBSD #######

##: 43184
2013-11-13 # hrs.
##© 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 DocEng

#i#

FreeBSD ####(###FDP, FreeBSD Documentation Project)##############
###################################(############) HAHHHAHAHHAH

HARBHARHARRHARAAARHA BRI FRHA R BHHHHH

Copyright

Redistribution and use in source (XML DocBook) and 'compiled' forms (XML, HTML, PDF, PostScript, RTF
and so forth) with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code (XML DocBook) must retain the above copyright notice, this list of
conditions and the following disclaimer as the first lines of this file unmodified.

2. Redistributions in compiled form (transformed to other DTDs, converted to PDF, PostScript, RTF and
other formats) must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

2 ##

THIS DOCUMENTATION IS PROVIDED BY THE FREEBSD DOCUMENTATION
PROJECT "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE FREEBSD DOCUMENTATION PROJECT BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS DOCUMENTATION,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

http://svnweb.freebsd.org/doc?view=revision&revision=43184

22 vii
1. Shell ####(PTOMPLS) ..evvvvvneeriiiieeeriiieeeesiiieeeettiis e e e et e eeaaieeeeeaiineeaanes vii
2o BHBHHBHRH oottt e vii
3. #Note#Tip#Important#Warning#Example####c.cccevveviineeiiineennnennn, vii
Ao BH oo viii
PP 1
1.1. FreeBSD ###HHHHH oot 1
DO 2 PP 2
L3, BHERH e e et aaeas 2
PPN 5
2.0 BHBH e 5
A 4 PP 6
T I o 4 T=) 9
KT PP 9
3.2. Elements, tags, and attributesceveeviiinreeiiiinneeiiiinneeiiiiineeeiiinn. 11
3.3. The DOCTYPE declarationc..veeruneeernneiinneiiineeiineeiieeeiineriineens 17
3.4. Escaping back t0 SGMLuueeviiinneeiiiineeeiiineeeiiinneeeiiieeeeeiineeeaiinnees 20
T PPN 20
3.6, ENTITIES ©ovvinivniniiiiiiiiiiii 22
3.7. Using entities to include filescoevviveiiiriiiiniiiiniiiiniiiiinciiineciis 25
3.8. Marked SECHIONS ...vvvvvuneeriiiieeiiiiisee et et e et e et e et eeeaianes 28
3.9. CONCIUSION 1vutiviieiiiieeiie ettt et ettt e e et e e e e e 33
4, SGML MATKUD 1.vvvvneiiiieeii ettt e ettt et e e et e et e et e e e 35
3 0 N 35
4.2, DOCBOOK ..ueeeiiieeetiii ettt ettt ettt e e e e 47
5 X SEYLESHEELS . vvvueeiie ittt 81
LT T) 1] PR 81
I O N PP PPN 81
6. Structuring documents under AOC/uvevrriiieriiiineeiiiiiie et eeiinne 83
6.1. The top level, dOC/ covviiiiniiiiiiie e 83
6.2. The Lang.encoding/ directoriescoceuuverrueriineriineeiineniinnnnnnn, 83
6.3. Document specific informationeeevevuveeiiriineeiiiiinneiiiiineeeennnn. 84
7. The Documentation BUild PrOCESSveevvrvuneeriiiineeiiiineeriiiineeeeiiineeeeiiinnens 87
7.1. The FreeBSD Documentation Build ToolSetccvvveviinvriinriiinneriinennnn.. 87
7.2. Understanding Makefiles in the Documentation tree 87
7.3. FreeBSD Documentation Project make includesc..ccovevvvrinneeennnnn.e. 90
8. ## WEDSIEE evvvtueeiiiiiseesiiis e ettt e et e ettt e e et e e et e e et e e e s 95
By FHRH ottt raens 95
8.2. Build the web pages from scratchcoovviviviiiiiniiiiiinniiieecn, 95
8.3, HREHBHHHHIHRT ettt ettt ettt et eeteeteeieeaieeeeaas 96
B, HHHH ot e 96
O. FRHRHHRH ittt ettt 97
TO. BHBHREHE ettt et e et 101

10,1, SEYIE GUIAE vuvvvineiiieeiie ettt 102

HHEHH

TO20 HRE Lot e 105
11. Using sgml-mode With EMACSeeuuniiiineiiieiiiieeiieeii e 107
L120 HHHH# oo e 109
12.1. The FreeBSD Documentation PrOJECt v.....evvvvunerrriuneeririineeriiiineennnann, 109
12.2. SGML ottt 109
123 HTML Lo s 109
12.4. DOCBOOK .evvviiiiiciiiiiiiiiiis e 109
12.5. The Linux Documentation PrOJECEuerrvvunerriiinsereiiineereiiineennnnns 109
A B 111
A.1. DOCBOOK DOOK ..vvviieeiiiiieeiiiiie e 111
A.2. DOCBOOK @rtiCle ..eevivinneeiiiiieeiiiiineeeiii e et e ettt e e e 112
A.3. Producing formatted OUEPULunevvriineriiiineeeiiineeeiiineeeeiineeeaaann 113
B e 117

#H##H#

Lo BHHRFHE Lo e viii
3.1. Using an element (start and end tags)cveerrriunerriiinneeriiiineesiiiieeennnnns 12
3.2. Using an element (Start tag only)ceeevvvrvrvuinnseererriiiiiiinnseeeeesiisiiinnnnss 12
3.3. Elements within elements; @Mo.veieiriririeieieieeeeee ettt eeeenanens 12
3.4. Using an element with an attributeoeveviiiieeiiiiineeiiiiineeeiie e, 13
3.5. Single quotes around attributesc.uvvviiviiiireiiieiiireiiee e 14
3.6. .profile, for sh(1) and bash(1) usersc.cccovvvviiviiiiniiiineiiieeiiieeiis 14
3.7. .cshrc, for csh(1) and teSh(1) USErS c.uvuienienieniee e 15
3.8. SGML generic COMMENEuvviviniiiininiiiniiiiiiiiiiniiineniieiicinieinienraas 21
3.9. Erroneous SGML COMMENESovvvuiniiiininiiiiiiiiiiiiiiiiininni e 21
3.10. Defining general entitiescvrrveriiiiiiiiiiinnneeeiiiiiiiiiinnneeeeeiiiiiiiannn, 23
3.11. Defining parameter €NtitIesuuuverrriunserriiinreririineereiineerriiineereiineannns 23
3.12. Using general entities to include filesccovvviriiiiininiiiiiiiiiiiinnnn, 25
3.13. Using parameter entities to include filescoovvvrriiiinerriiiinreriiiinnnnnnnn, 26
3.14. Structure of a marked SECtioNceevvviineeiiiiinieiiiiine e 29
3.15. Using a CDATA marked SECtIONvvvuneiiineiiiieeiiieeiie e 30
3.16. Using INCLUDE and IGNORE in marked sectionsccccccvvconnreeeririnnnnnnn. 31
3.17. Using a parameter entity to control a marked sectionccoeevvvvunernnnn 31
4.1. Normal HTML document SEPUCEULEceevvvnnerriiineeeiiineeeiiineeeiiieeeeiiinneeeans 36
4.2, N1, N2, €EC. tuiiiiiiiii e 37
4.3. Bad ordering of hn elementscccovvurmiiiinniiiiiiiiiiiiinineiiiiiiiie 37
B D e, 38
T o1 o Yol e 1o - O PPPN 38
4.6. UL AN O ceviniiiiiieeiiii ettt 39
4.7. Definition lists With dlveeiiiiiiiiiiiiriii e 39
L T o] - PPN 40
4.9, SIMPple USE Of TADLE tuvvivvvneiiiieiiieeiiee it et e e et e e et e eaieeeaes 41
4.10. USINE FOWSPAN .vtvuiriininiininininetinetiiineteneteiaenriensmstnetreneneienranensmnienns 42
T 8 05 54T~ o1] - |3 42
4.12. Using rowspan and colspan togetherccooevvvivveviiiineeiiiiinieiiiiineennnnn, 43
4,13, €M AN STIONG Liviiriitiiiiiteiei ettt 43
414, D AN § 1eeeeiiiiiiiii e ettt eeeans 44
T o N 44
4,16. big, small, and TONTccvviririiiieieeieeie et e e e e e e e e et eeeraerenns 45
4.17. Using ... 45
4.18. Using <@ Name="..."> ...iiiiiiiiniiiniiiinitiiiniiiniiienienrieeiniarieerieans 46
4.19. Linking to a named part of another documentccevvvviriiiinnnneiiinin. 46
4.20. Linking to a named part of the same documentcoeevvvvvnnerrriinnennnnnn 46
4.21. Boilerplate book with DOOKINTOccevunieviiiiiiiiiiinieiiiiineeii e 49
4.22. Boilerplate article with articleinfocccoveiiiiiiiiiiiiiiniiiieiiineeie, 49
4.23, A SIMPle ChAPLeT ...vvvniiiieiiieii ettt e e 50
4.24. EMPLY CRAPLETS evueeiieiiieeii ettt ettt e e 51
4,25, SECHIONS 1N CRAPLETS ..vvvvrviineiiieiiiesiieeiieerieetie e et e eaieeesieesinesiineesines 51
L 3 Y o -] o= I PP PP 53

http://www.FreeBSD.org/cgi/man.cgi?query=sh&sektion=1
http://www.FreeBSD.org/cgi/man.cgi?query=bash&sektion=1
http://www.FreeBSD.org/cgi/man.cgi?query=csh&sektion=1
http://www.FreeBSD.org/cgi/man.cgi?query=tcsh&sektion=1

4,27, DLOCKQUOTE iiriiiitietiitiete et e e e ettt et e e e e eereeseeseasenaeaseneenaens 53
232 AT o 1 1 ¢ Lo E OO 54
4,29, itemizedlist , orderedlist , and procedurecocovvvviviivniveruninnnnnnn, 55
4.30. ProgramliSting ..eevueivreirreirreenteenteeiteenteenreeareetteetreetteeereetreeteeaeeaeeanes 57
4,31, co and CALLOUTTIST oviviiriiriiniitiiieit ettt et e e e eveenens 57
4,32, ANTOrMAltable ..ottt e e e 59
4,33, Tables Where frame="nNoNE"cccovireiriireiriiieiriieieieieeieieeereeernesnns 60
4,34, screen, prompt, and USEIrINPULceuivnivniiniiniiiiiieie e eie e 61
4,35, BMPNASIS tuieriitiitiitiite e e ettt e e eenaas 62
TSI 0] o] =1 (o) ¢ LI PP 62
4.37. Keys, mouse buttons, and combinationseeeevvuneeeeiiinnereiiinneeenninnnn. 63
4.38. Applications, commands, and OPtiONS.c.uuurerrriiieeriiiinerriiiineeeiiiineernnan 64
T i A =T - 1 T P PPN 65
4.40. filename tag with package 10lecoevviviireeiiiiineeiiiiiieeiiiiie e, 66
441, dEVICENAME .tuvvrirriereeteerenteetententent et ensentesenteneeseerenssesenseesensensenseneensens 67
4,42, hoSTIid N TOIES .vvivnieiiiiiie it 68
443, USEINAME 1.iutriuinttteninteteuetesentteneuensssensatesesnssssnsmnessusnssssnsssessisnssseses 70
4.44, maketarget and MAKEVATcouvieiiniiniiiiiiiei e 70
T s K <Y - | PPN 71
4,46, TEPLACEADLE ottt e 72
L R =T o o T o 0= {11 N 73
4.48. 1id on chapters and SeCTiONScviiviiiiiiiiiiii i eieeiaeaaaes 77
- 11 Lol 1 To] o PP 77
4.50. USINE XIeT L.iviiiiiiiiiiiiiiiiii e 78
4,51, USING TINK tuvviiiiiiiiiiiiiii et 79
Y U] & 1 1| PP PP PPPN 80
A1, DOCBOOK DOOK ..vvusveneiesieeiieiieetieste st e s et et e te et e et e et e e e atesanesaneeans 111
A.2. DOCBOOK @rtiCle uuivniiiiiiii ittt 112
A3, ## DOCBOOK # HTML (BHHH) o.oviivniiieiieeieieee e et 113
A4, ## DOCBOOK # HTML (B#H#) L..uueiiiiieeeeiiieee e e e et e e e e e e e e, 113
A.5. ## DOCBOOK # POSESCIIPt(PS) ## ...eevviiieeeiiiieeeeiiie e et e et 114
A6, ## DOCBOOK # PDF ## ..ivieiiiieeieee et ettt 115

Vi

#i#

1. Shell #3###(Prompts)

HRAHHHFRAHR YOOt #HAHHARHHHARHHHRARHHHH (prompt) HARRRBHARARHHH

####(Prompt)
##t## %
root #
HARHABHAR AR AR HH
##
s -a ########H
.login
HHAHBHHAH You have mail.

% su

Password:
########(manual) # su(1) ###sas

#an#(user) ##(group) #H####..,

root #####HHEH

HH#H#H HARRHHBHARYE
H#RAHBHHH RS HERABHBHAHE v HHEEEE
HAH#HH SHOME ##########H#

3. #Note#Tip#Important#Warning#Example####

HAHHHBRAHAHHBRAHHHHBRRHAH BB BHHH AR

http://www.FreeBSD.org/cgi/man.cgi?query=su&sektion=1

##

##

RERAHARRRHAA AR RRRAAAHBRRRA AR RRRH AR RRHH

##

LA b A A A A A A A A
HHHHHHHHHFHHHF A

##

REHARBRRRHH AR RRRRHAHRRRHHHHRRRAH AR

##

Q| D 0| 4

BB BB B BB BB B BB BB B BB BB BB BBBBRL BB RBELY BHEBELR BB RS
HHHHHHHH TR F R F R F R

HARBHARIHBE,H

#H# 1., #HHHRH

LA el Al A A A A A A A A A
HHHHHHHHHH R F AR A FHHFF T

4.

##

Sue Blake, Patrick Durusau, Jon Hamilton, Peter Flynn, Christopher Maden

HHHHHHHH TR

viii

1.

TreeBSD #A###########RE FreeBSD ########## # TreeBSD ####(#### FDP
FreeBSD Documentation Project ###) ##########RHAHHABHRIHHIAHABHAH

Kl A A A A A A A A A A it BRESBHE RS SS R
HHHHHHHHHF A HHAHHHHHHFHHHHHFHHH TS HHHHHHHHH 1 H

HHAHHAAIRAIAE FDD #HATDD #HHHR S R FreeBSD
documentation project #### #

HAHAHRBRHHH

o #### FDP #### SGML #####

o HHEHBHARHHHAH

o HEABHARHHABHARHHHRRAS FreeBSD ####

1.1. FreeBSD #######

FDP #### FreeBSD # 4 #######

####(manual)
manual ##4# FDP ####-FFFEH#E Dase system #### #HEEDD ##(#H--HE) BIRIRIH
BU#AABHHAAB R H AR R R AR

HEHAHBRARHHAHBRHHHAHBRY HH###H FDP ##4#

FAQ
FAQ #####HHH#H newsgroup ############ FreeBSD ####### # (#############) #H##
HAHBBRBHHHHHRHR BB RS H

####(Handbook)
#RHH#HHE FreeBSD #HH#RHHHRHHAR1H

Web site
FreeBSD ######### WWW ####### http://www.FreeBSD.org/ ###### mirror ######
######## FreeBSD ####

HERBRBAAARAERS TTeeBSD CVS tree #H#AHARERIHHIHIRIRIRBIHIRIRIR FEBRERHI#I#E CSup,
CVSup # CTM ######(Checkout) #######HHH#HH###H#H

HERHRRRBRBRBBRRRRS FreeBSD #H####(HHAHH#H) H######4## FreeBSD ## CVS repository ##
#ERBHARRRAAARRAAA FreeBSD repository ####### #HHTDP ##A#RRHAARHHH

http://lists.FreeBSD.org/mailman/listinfo/freebsd-doc
http://lists.FreeBSD.org/mailman/listinfo/freebsd-doc
../../../../index.html

HEHAH...

1.2, #4HHHE ...

HAHHHBREHY

o ### FreeBSD CVS repository ######## FreeBSD ####(# CVS # CSup # CVSup ## CTM) #
CVSup ### checked-out

o ### FreeBSD Ports ####### pkg_add(1) ####sssss

1.3. ##t###

HAHAAHBRAHARABRRHHAR AR RRHAAARRY

1. ## textproc/docproj ##### port(meta-port)#

cd /usr/ports/textproc/docproj
make JADETEX=no install

2. ## FreeBSD doc tree ##### #### CSup # CVSup # checkout ### ####### CVS
repository ########

#unpnpttat#E CVS repository ######## checkout # doc/share ## doc/
en_US.IS08859-1/share ########

% cvs checkout doc/share
% cvs checkout doc/en_US.IS08859-1/share

% cvs checkout doc

3. ##### repository # checkout #######EBHAHBHIHBRE BREHHBRBHHBHRIHBRRBRBHRRHY
##

HERHHARARRRARAHAAHH FreeBSD # Windows 2000 #### VPN ### ###H##HR#HH#1H

1. Checkout articles ###

% cvs checkout doc/en_US.IS08859-1/articles

BERHHH VDN -W2K HAHHH

% cd doc/en_US.IS08859-1/articles
% cp -R committers-guide vpn-w2k

###napsatan# FAQ(## doc/en_US.IS08859-1/books/faq) ##### repository ####
(check out)#

% cvs checkout doc/en_US.IS08859-1/books/faq

http://www.FreeBSD.org/cgi/man.cgi?query=pkg_add&sektion=1
http://www.freebsd.org/cgi/url.cgi?ports/textproc/docproj/pkg-descr

#1. ##

4

#####HE xm ##

Lint ###AHAAHARARBRBRBRBRBEE BRER GG BH G R HHBHBRHRHHARAAAAAAAAA A

% make lint

#HH##HA A AR FORMATS ####BHAAHHAREAS #HHARHHH#HHE DML, h‘tml-split , txt,
ps, pdf, rtf # ###sasasasn##s# doc/share/mk/doc.docbook.mk — ## #### ######AY

HHHHHHHHHHHEEHEHHH(HHHHHHHHHH
#ARH#HHA AR AR AR (QUOtes) #tHHAHHHIHH

HERRBARRRH NEML BHABRRBHRY
% make FORMATS=html
#HEAE NI # Xt #aas paasant make(1) #o#####

% make FORMATS=html
% make FORMATS=txt

HARHHBHAR AR BAHH
% make FORMATS="html txt"

send-pr(1) #####nnis

http://www.FreeBSD.org/cgi/man.cgi?query=make&sektion=1
http://www.FreeBSD.org/cgi/man.cgi?query=send-pr&sektion=1

2.

FDP ########### FreeBSD ####HHHAH#H#BHE #HHBHHH FDP #EHARBBRAHHAHH RIS

######## Ports # Packages #ERBHBRBRBHHHHH

HHAHHHHH AR AA AT T AR

textproc/docproj

textproc/docproj ########### #### port(meta-port)
HEHRBHRBHRIRRS B DOTT #HHRHRHRIHR R
####### chinese/docproj #####

#H# packages #annnaapint JadeTeX ## macro ### ####### macro #
HAAAHAAE TeX### TeX #ERHHHI#H# #E##### Postscript # PDF #######
#H#HH

HERBRRARRRRRARRRRRA R JadeTeX (## TeX) #####HEREH#H
make JADETEX=yes install

HEHBHAH

make JADETEX=no install

######s textproc/docproj-jadetex ## textproc/docproj-nojadetex
#E#H#RAE #HRERARAE JADETEX ### slave ports# ##### docproj #####
JadeTeX ### #u####s#st HTML # ASCI ####u##### JadeTeX#
PostScript#PDF ####### TeX

2.1. ####
2.1.1. ##

#H##### FreeeBSD ########H###HH##H #unnnnnn## HTML#plain text## RTF ##########
textproc/docproj #########

Jade (textproc/jade)
DSSSL ###################(Marked up) ####t######HTML # TeX#

Tidy (www/tidy)
HTML “pretty printer” ########## HTML ######A##AH# AR

http://www.freebsd.org/cgi/url.cgi?ports/textproc/docproj/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/textproc/docproj/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/chinese/docproj/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/textproc/docproj-jadetex/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/textproc/docproj-nojadetex/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/textproc/docproj/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/textproc/jade/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/www/tidy/pkg-descr

DTD # Entity

Links (www/links)
#rnant WWW ###(browser)### HTML ### plain text ###

peps (graphics/peps)
HHAAABREH EPS #A##ABRERH#H PNG ### #EHHARBRHHHAHBY

2.1.2. DTD # Entity
FDP ##### DTD # Entity################

HTML DTD (textproc/html)
HTML ### WWW #####4#44# FreeBSD #########

DocBook DTD (textproc/docbook)
DocBook ################### FreeBSD ####### DocBook #####

ISO 8879 entities (textproc/is08879)
#1S0O 8879:1986 ### 19 # entity ### DTD ###### ##############(##########)#######

2.1.3. ##i#(Stylesheets)

Modular DocBook ### (textproc/dsssl- docbook modular)
Modular DocBook ######## DocBook ## HHHHAHY # HTML # RTF#

2.2. ###H#

2.2.1. ##

JadeTeX # teTeX (print/jadetex # print/teTeX)
Jade # teTeX #### DocBook ###### DVI, Postscript # PDF ########### JadeTeX ##
MACTO##REHEHHRHHIRRH

#unanannannans(#aaes HTML, plain text, RTF ########) ####### JadeTeX # teTeX# #
HARAARARRRRRRRHAAS #H teTeX ####4# 30MB ###

##

A ###n# JadeTeX ## teTeX #####t# JadeTeX ### ##### teTeX #
##print/jadetex/pkg-message ###########

http://www.freebsd.org/cgi/url.cgi?ports/www/links/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/graphics/peps/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/textproc/html/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/textproc/docbook/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/textproc/iso8879/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/textproc/dsssl-docbook-modular/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/print/jadetex/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/print/teTeX/pkg-descr

2.

Emacs # XEmacs (editors/emacs # editors/xemacs)
HREBHBARREE SGML DTD #AARHHEARE BREHBHHBRER BRI RRRRARRRBHIABRY

el did g g g g g gt ot d e e vl e e b v gt b e

HARHHHRRRRH SGML HAAAHHHHY Documentation Engineering Team

Lt e A A A A A A A

<doceng@FreeBSD.org > ### ########H######H#HH

http://www.freebsd.org/cgi/url.cgi?ports/editors/emacs/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/editors/xemacs/pkg-descr
mailto:doceng@FreeBSD.org

3. SGML Primer

####n##### Mark Galassi ### Get Going With DocBook#

3.1. ##

Way back when, electronic text was simple to deal with. Admittedly, you had to know
which character set your document was written in (ASCII, EBCDIC, or one of a number of
others) but that was about it. Text was text, and what you saw really was what you got.
No frills, no formatting, no intelligence.

Inevitably, this was not enough. Once you have text in a machine-usable format, you
expect machines to be able to use it and manipulate it intelligently. You would like
to indicate that certain phrases should be emphasized, or added to a glossary, or be
hyperlinks. You might want filenames to be shown in a “typewriter” style font for
viewing on screen, but as “italics” when printed, or any of a myriad of other options for
presentation.

It was once hoped that Artificial Intelligence (AI) would make this easy. Your computer
would read in the document and automatically identify key phrases, filenames, text that
the reader should type in, examples, and more. Unfortunately, real life has not happened
quite like that, and our computers require some assistance before they can meaningfully
process our text.

More precisely, they need help identifying what is what. You or I can look at

To remove /tmp/foo use rm(1).
% rm /tmp/foo

and easily see which parts are filenames, which are commands to be typed in, which parts
are references to manual pages, and so on. But the computer processing the document
cannot. For this we need markup.

“Markup” is commonly used to describe “adding value” or “increasing cost”. The term
takes on both these meanings when applied to text. Markup is additional text included in
the document, distinguished from the document's content in some way, so that programs
that process the document can read the markup and use it when making decisions about
the document. Editors can hide the markup from the user, so the user is not distracted
by it.

The extra information stored in the markup adds value to the document. Adding the
markup to the document must typically be done by a person——after all, if computers

http://nis-www.lanl.gov/~rosalia/mydocs/docbook-intro/docbook-intro.html
http://www.FreeBSD.org/cgi/man.cgi?query=rm&sektion=1

##

could recognize the text sufficiently well to add the markup then there would be no need
to add it in the first place. This increases the cost (i.e., the effort required) to create the
document.

The previous example is actually represented in this document like this:

<para>To remove <filename>/tmp/foo</filename> use &man.rm.1l;.</para>

<screen>&prompt.user; <userinput>rm /tmp/foo</userinput></screen>
As you can see, the markup is clearly separate from the content.

Obviously, if you are going to use markup you need to define what your markup means,
and how it should be interpreted. You will need a markup language that you can follow
when marking up your documents.

Of course, one markup language might not be enough. A markup language for technical
documentation has very different requirements than a markup language that was to be
used for cookery recipes. This, in turn, would be very different from a markup language
used to describe poetry. What you really need is a first language that you use to write
these other markup languages. A meta markup language.

This is exactly what the Standard Generalized Markup Language (SGML) is. Many markup
languages have been written in SGML, including the two most used by the FDP, HTML
and DocBook.

Each language definition is more properly called a Document Type Definition (DTD). The
DTD specifies the name of the elements that can be used, what order they appear in (and
whether some markup can be used inside other markup) and related information. A DTD
is sometimes referred to as an application of SGML.

A DTD is a complete specification of all the elements that are allowed to appear, the order
in which they should appear, which elements are mandatory, which are optional, and so
forth. This makes it possible to write an SGML parser which reads in both the DTD and
a document which claims to conform to the DTD. The parser can then confirm whether
or not all the elements required by the DTD are in the document in the right order, and
whether there are any errors in the markup. This is normally referred to as “validating
the document”.

##

S This processing simply confirms that the choice of elements, their
ordering, and so on, conforms to that listed in the DTD. It does not
check that you have used appropriate markup for the content. If you

10

3. SGML Primer

tried to mark up all the filenames in your document as function
names, the parser would not flag this as an error (assuming, of
course, that your DTD defines elements for filenames and functions,
and that they are allowed to appear in the same place).

It is likely that most of your contributions to the Documentation Project will consist of
content marked up in either HTML or DocBook, rather than alterations to the DTDs. For
this reason this book will not touch on how to write a DTD.

3.2. Elements, tags, and attributes

All the DTDs written in SGML share certain characteristics. This is hardly surprising,
as the philosophy behind SGML will inevitably show through. One of the most obvious
manifestations of this philosophy is that of content and elements.

Your documentation (whether it is a single web page, or a lengthy book) is considered to
consist of content. This content is then divided (and further subdivided) into elements.
The purpose of adding markup is to name and identify the boundaries of these elements
for further processing.

For example, consider a typical book. At the very top level, the book is itself an element.
This “book” element obviously contains chapters, which can be considered to be elements
in their own right. Each chapter will contain more elements, such as paragraphs,
quotations, and footnotes. Each paragraph might contain further elements, identifying
content that was direct speech, or the name of a character in the story.

You might like to think of this as “chunking” content. At the very top level you have one
chunk, the book. Look a little deeper, and you have more chunks, the individual chapters.
These are chunked further into paragraphs, footnotes, character names, and so on.

Notice how you can make this differentiation between different elements of the content
without resorting to any SGML terms. It really is surprisingly straightforward. You could
do this with a highlighter pen and a printout of the book, using different colors to indicate
different chunks of content.

Of course, we do not have an electronic highlighter pen, so we need some other way of
indicating which element each piece of content belongs to. In languages written in SGML
(HTML, DocBook, et al) this is done by means of tags.

A tag is used to identify where a particular element starts, and where the element ends.
The tag is not part of the element itself. Because each DTD was normally written to mark
up specific types of information, each one will recognize different elements, and will
therefore have different names for the tags.

11

Elements, tags, and attributes

For an element called element-name the start tag will normally look like <element-
name>. The corresponding closing tag for this element is </element-name> .

##3.1. Using an element (start and end tags)

HTML has an element for indicating that the content enclosed by the element is
a paragraph, called p. This element has both start and end tags.

<p>This is a paragraph. It starts with the start tag for
the 'p' element, and it will end with the end tag for the 'p'
element.</p>

<p>This is another paragraph. But this one is much shorter.</
p>

Not all elements require an end tag. Some elements have no content. For example, in
HTML you can indicate that you want a horizontal line to appear in the document.
Obviously, this line has no content, so just the start tag is required for this element.

3.2, Using an element (start tag only)

HTML has an element for indicating a horizontal rule, called hr. This element does
not wrap content, so only has a start tag.

<p>This is a paragraph.</p>
<hr>

<p>This is another paragraph. A horizontal rule separates this
from the previous paragraph.</p>

If it is not obvious by now, elements can contain other elements. In the book example
earlier, the book element contained all the chapter elements, which in turn contained all
the paragraph elements, and so on.

3.3. Elements within elements; em

<p>This is a simple paragraph where some

12

3. SGML Primer

of the words have been emphasized.</p>

The DTD will specify the rules detailing which elements can contain other elements, and
exactly what they can contain.

##

A People often confuse the terms tags and elements, and use the
terms as if they were interchangeable. They are not.

An element is a conceptual part of your document. An element has
a defined start and end. The tags mark where the element starts
and end.

When this document (or anyone else knowledgeable about SGML)
refers to “the <p> tag” they mean the literal text consisting of the
three characters <, p, and >, But the phrase “the <p> element” refers
to the whole element.

This distinction is very subtle. But keep it in mind.

Elements can have attributes. An attribute has a name and a value, and is used for
adding extra information to the element. This might be information that indicates how
the content should be rendered, or might be something that uniquely identifies that
occurrence of the element, or it might be something else.

An element's attributes are written inside the start tag for that element, and take the form
attribute-name="attribute-value"

In sufficiently recent versions of HTML, the p element has an attribute called align, which
suggests an alignment (justification) for the paragraph to the program displaying the
HTML.

The align attribute can take one of four defined values, left, center, right and
justify. If the attribute is not specified then the default is left.

3.4, Using an element with an attribute

<p align="left">The inclusion of the align attribute
on this paragraph was superfluous, since the default is o
left.</p>

13

For you to do...

<p align="center">This may appear in the center.</p>

Some attributes will only take specific values, such as left or justify . Others will allow
you to enter anything you want. If you need to include quotes (") within an attribute then
use single quotes around the attribute value.

3.5. Single quotes around attributes
<p align='right'>I am on the right!</p>

Sometimes you do not need to use quotes around attribute values at all. However, the
rules for doing this are subtle, and it is far simpler just to always quote your attribute
values.

The information on attributes, elements, and tags is stored in SGML catalogs. The various
Documentation Project tools use these catalog files to validate your work. The tools in
textproc/docproj include a variety of SGML catalog files. The FreeBSD Documentation
Project includes its own set of catalog files. Your tools need to know about both sorts of
catalog files.

3.2.1. For you to do...

In order to run the examples in this document you will need to install some software on
your system and ensure that an environment variable is set correctly.

1. Download and install textproc/docproj from the FreeBSD ports system. This is a
meta-port that should download and install all of the programs and supporting files
that are used by the Documentation Project.

2. Add lines to your shell startup files to set SGML_CATALOG_FILES . (If you are not
working on the English version of the documentation, you will want to substitute
the correct directory for your language.)

##3.6. .profile, for sh(1) and bash(1) users

SGML_R0O0T=/usr/local/share/xml
SGML_CATALOG_FILES=${SGML ROOT}/jade/catalog
SGML_CATALOG FILES=${SGML ROOT}/is08879/catalog:
$SGML_CATALOG_FILES

14

http://www.freebsd.org/cgi/url.cgi?ports/textproc/docproj/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/textproc/docproj/pkg-descr
http://www.FreeBSD.org/cgi/man.cgi?query=sh&sektion=1
http://www.FreeBSD.org/cgi/man.cgi?query=bash&sektion=1

3. SGML Primer

##3.7. . cshrc, for csh(1) and tcsh(1) users

Then either log out, and log back in again, or run those commands from the
command line to set the variable values.

1. Create example.xml , and enter the following text:

http://www.FreeBSD.org/cgi/man.cgi?query=csh&sektion=1
http://www.FreeBSD.org/cgi/man.cgi?query=tcsh&sektion=1

For you to do...

2. Try to validate this file using an SGML parser.
Part of textproc/docproj is theim validating parser [10]. Normallydm
reads in a document marked up according to an SGML DTD and returns a copy of
the document's Element Structure Information Set (ESIS, but that is not important
right now).
However, when nsgmls is given the -s parameter, nsgmls will suppress its normal
output, and just print error messages. This makes it a useful way to check to see if
your document is valid or not.
Use nsgmls to check that your document is valid:
% nsgmls -s example.xml
As youwill see, nsgmls returns without displaying any output. This means that your
document validated successfully.

3. See what happens when required elements are omitted. Try removing the title and

/title tags, and re-run the validation.

% nsgmls -s example.xml

nsgmls:example.xml:5:4:E: character data is not allowed here
nsgmls:example.xml:6:8:E: end tag for "HEAD" which is not finished
The error output from nsgmls is organized into colon-separated groups, or columns.

Column Meaning

1 The name of the program generating the
error. This will always be nsgmls.

2 The name of the file that contains the error.

3 Line number where the error appears.

4 Column number where the error appears.

5 A one letter code indicating the nature of
the message. I indicates an informational
message, W is for warnings, and E is for
errors?, and X is for cross-references. As you
can see, these messages are errors.

6 The text of the error message.

1t is not always the fifth column either. nsgmls -sv displays nsgmls:I: SP version "1.3"

(depending on the installed version). As you can see, this is an informational message.

16

Simply omitting the title tags has generated 2 different errors.

http://www.freebsd.org/cgi/url.cgi?ports/textproc/docproj/pkg-descr

3. SGML Primer

The first error indicates that content (in this case, characters, rather than the start
tag for an element) has occurred where the SGML parser was expecting something
else. In this case, the parser was expecting to see one of the start tags for elements
that are valid inside head (such as title).

The second error is because head elements must contain a title element. Because
it does not nsgmls considers that the element has not been properly finished.
However, the closing tag indicates that the element has been closed before it has
been finished.

4. Putthe title element back in.

3.3. The DOCTYPE declaration

The beginning of each document that you write must specify the name of the DTD that the
document conforms to. This is so that SGML parsers can determine the DTD and ensure
that the document does conform to it.

This information is generally expressed on one line, in the DOCTYPE declaration.

A typical declaration for a document written to conform with version 4.0 of the HTML
DTD looks like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0//EN">

That line contains a number of different components.

<!
Is the indicator that indicates that this is an SGML declaration. This line is declaring
the document type.

DOCTYPE
Shows that this is an SGML declaration for the document type.

html
Names the first element that will appear in the document.

PUBLIC "-//W3C//DTD HTML 4.0//EN"
Lists the Formal Public Identifier (FPI) for the DTD that this document conforms
to. Your SGML parser will use this to find the correct DTD when processing this
document.

PUBLIC is not a part of the FPI, but indicates to the SGML processor how to find the
DTD referenced in the FPI. Other ways of telling the SGML parser how to find the DTD
are shown later.

17

Formal Public Identifiers (FPIs)

Returns to the document.

3.3.1. Formal Public Identifiers (FPIs)

##

S You do not need to know this, but it is useful background, and might
help you debug problems when your SGML processor can not locate
the DTD you are using.

FPIs must follow a specific syntax. This syntax is as follows:

"Owner //Keyword Description //Language "

Owner

This indicates the owner of the FPI.

If this string starts with “ISO” then this is an 1ISO owned FPI. For example, the FPI
"ISO 8879:1986//ENTITIES Greek Symbols//EN" lists ISO 8879:1986 as being
the owner for the set of entities for Greek symbols. ISO 8879:1986 is the ISO number
for the SGML standard.

Otherwise, this string will either look like -//0wner or +//0wner (notice the only
difference is the leading + or -).

If the string starts with - then the owner information is unregistered, with a + it
identifies it as being registered.

IS0 9070:1991 defines how registered names are generated; it might be derived from
the number of an ISO publication, an ISBN code, or an organization code assigned
according to ISO 6523. In addition, a registration authority could be created in order
to assign registered names. The ISO council delegated this to the American National
Standards Institute (ANSI).

Because the FreeBSD Project has not been registered the owner stringis - //FreeBSD .
And as you can see, the W3C are not a registered owner either.

Keyword

18

There are several keywords that indicate the type of information in the file. Some of
the most common keywords are DTD, ELEMENT , ENTITIES , and TEXT. DD is used only
for DTD files, ELEMENT is usually used for DTD fragments that contain only entity or
element declarations. TEXT is used for SGML content (text and tags).

3. SGML Primer

Description
Any description you want to supply for the contents of this file. This may include
version numbers or any short text that is meaningful to you and unique for the SGML
system.

Language
This is an ISO two-character code that identifies the native language for the file. EN
is used for English.
3.3.1.1. catalogfiles
If you use the syntax above and process this document using an SGML processor, the
processor will need to have some way of turning the FPI into the name of the file on your

computer that contains the DTD.

In order to do this it can use a catalog file. A catalog file (typically called catalog) contains
lines that map FPIs to filenames. For example, if the catalog file contained the line:

PUBLIC "-//W3C//DTD HTML 4.0//EN" "4.0/strict.dtd"

The SGML processor would know to look up the DTD from strict.dtd in the 4.0
subdirectory of whichever directory held the catalog file that contained that line.

Look at the contents of /usr/local/share/xml/html/catalog . This is the catalog file
for the HTML DTDs that will have been installed as part of the textproc/docproj port.

3.3.1.2. SGML_CATALOG_FILES
In order to locate a catalog file, your SGML processor will need to know where to look.
Many of them feature command line parameters for specifying the path to one or more

catalogs.

In addition, you can set SGML_CATALOG_FILES to point to the files. This environment
variable should consist of a colon-separated list of catalog files (including their full path).

Typically, you will want to include the following files:
e /usr/local/share/xml/docbook/4.1/catalog

e /usr/local/share/xml/html/catalog

e /usr/local/share/xml/iso8879/catalog

» /usr/local/share/xml/jade/catalog

You should already have done this.

19

http://www.freebsd.org/cgi/url.cgi?ports/textproc/docproj/pkg-descr

Alternatives to FPIs

3.3.2. Alternatives to FPIs

Instead of using an FPI to indicate the DTD that the document conforms to (and therefore,
which file on the system contains the DTD) you can explicitly specify the name of the file.

The syntax for this is slightly different:

<!DOCTYPE html SYSTEM "/path/to/file.dtd">

The SYSTEM keyword indicates that the SGML processor should locate the DTD in a system
specific fashion. This typically (but not always) means the DTD will be provided as a
filename.

Using FPIs is preferred for reasons of portability. You do not want to have to ship a copy of
the DTD around with your document, and if you used the SYSTEM identifier then everyone
would need to keep their DTDs in the same place.

3.4. Escaping back to SGML

Earlier in this primer I said that SGML is only used when writing a DTD. This is not
strictly true. There is certain SGML syntax that you will want to be able to use within
your documents. For example, comments can be included in your document, and will be
ignored by the parser. Comments are entered using SGML syntax. Other uses for SGML
syntax in your document will be shown later too.

Obviously, you need some way of indicating to the SGML processor that the following
content is not elements within the document, but is SGML that the parser should act upon.

These sections are marked by <! ... > in your document. Everything between these
delimiters is SGML syntax as you might find within a DTD.

As you may just have realized, the DOCTYPE declaration is an example of SGML syntax
that you need to include in your document...

3.5. ##

Comments are an SGML construction, and are normally only valid inside a DTD. However,
as # 3.4, “Escaping back to SGML” shows, it is possible to use SGML syntax within your
document.

The delimiter for SGML comments is the string “--”. The first occurrence of this string
opens a comment, and the second closes it.

20

3. SGML Primer

3.8. SGML generic comment

If you have used HTML before you may have been shown different rules for comments.
In particular, you may think that the string <! - - opens a comment, and it is only closed
by -->.

This is not the case. A lot of web browsers have broken HTML parsers, and will accept
that as valid. However, the SGML parsers used by the Documentation Project are much
stricter, and will reject documents that make that error.

3.9, Erroneous SGML comments

The SGML parser will treat this as though it were actually:

This is not valid SGML, and may give confusing error messages.

As the example suggests, do not write comments like that.

21

For you to do...

<!-- -->

That is a (slightly) better approach, but it still potentially confusing to people new
to SGML.

3.5.1. For you to do...

1. Add some comments to example.xml , and check that the file still validates using
nsgmls.

2. Add some invalid comments to example.xml, and see the error messages that
nsgmls gives when it encounters an invalid comment.

3.6. Entities

Entities are a mechanism for assigning names to chunks of content. As an SGML parser
processes your document, any entities it finds are replaced by the content of the entity.

This is a good way to have re-usable, easily changeable chunks of content in your SGML
documents. It is also the only way to include one marked up file inside another using
SGML.

There are two types of entities which can be used in two different situations; general
entities and parameter entities.

3.6.1. General Entities

You cannot use general entities in an SGML context (although you define them in one).
They can only be used in your document. Contrast this with parameter entities.

Each general entity has a name. When you want to reference a general entity (and
therefore include whatever text it represents in your document), you write &entity-
name; . For example, suppose you had an entity called current.version which expanded
to the current version number of your product. You could write:

<para>The current version of our product is
¤t.version; .</para>

When the version number changes you can simply change the definition of the value of
the general entity and reprocess your document.

You can also use general entities to enter characters that you could not otherwise
include in an SGML document. For example, < and & cannot normally appear in an SGML
document. When the SGML parser sees the < symbol it assumes that a tag (either a start

22

3. SGML Primer

tag or an end tag) is about to appear, and when it sees the & symbol it assumes the next
text will be the name of an entity.

Fortunately, you can use the two general entities < and ∓ whenever you need to
include one or other of these.

A general entity can only be defined within an SGML context. Typically, this is done
immediately after the DOCTYPE declaration.

3.10. Defining general entities

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0//EN" [

<!ENTITY current.version "3.0-RELEASE">
<!ENTITY last.version "2.2.7-RELEASE">
1>

Notice how the DOCTYPE declaration has been extended by adding a square
bracket at the end of the first line. The two entities are then defined over the next
two lines, before the square bracket is closed, and then the DOCTYPE declaration
is closed.

The square brackets are necessary to indicate that we are extending the DTD
indicated by the DOCTYPE declaration.

3.6.2. Parameter entities

Like general entities, parameter entities are used to assign names to reusable chunks
of text. However, where as general entities can only be used within your document,
parameter entities can only be used within an SGML context.

Parameter entities are defined in a similar way to general entities. However, instead of
using &entity-name; to refer tothem, use %entity-name; *. The definition also includes
the % between the ENTITY keyword and the name of the entity.

3.11. Defining parameter entities

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0//EN" [
<!ENTITY % param.some "some">

!Parameter entities use the Percent symbol.

23

For you to do...

<!ENTITY % param.text "text">
<!ENTITY % param.new "%param.some more Sparam.text">
1>

This may not seem particularly useful. It will be.

3.6.3. For you to do...

1. Add a general entity to example.xml .

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" [
<!ENTITY version "1.1">

1>
<html>
<head>
<title>An example HTML file</title>
</head>
<body>
<p>This is a paragraph containing some text.</p>
<p>This paragraph contains some more text.</p>
<p align="right">This paragraph might be right-justified.</p>
<p>The current version of this document is: &version;</p>
</body>
</html>

2. Validate the document using nsgmts.

3. Loadexample.xml intoyour web browser (youmay need to copy it to example.html
before your browser recognizes it as an HTML document).

Unless your browser is very advanced, you will not see the entity reference
&version; replaced with the version number. Most web browsers have very
simplistic parsers which do not handle proper SGML?.

4. The solution is to normalize your document using an SGML normalizer. The
normalizer reads in valid SGML and outputs equally valid SGML which has been
transformed in some way. One of the ways in which the normalizer transforms the
SGML is to expand all the entity references in the document, replacing the entities
with the text that they represent.

This is a shame. Imagine all the problems and hacks (such as Server Side Includes) that could be avoided if
they did.

24

3. SGML Primer

You can use sgmlnorm to do this.

% sgmlnorm example.xml > example.html

You should find a normalized (i.e., entity references expanded) copy of your
document in example.html , ready to load into your web browser.

5. If you look at the output from sgmlnorm you will see that it does not include a
DOCTYPE declaration at the start. To include this you need to use the -d option:

% sgmlnorm -d example.xml > example.html

3.7. Using entities to include files

Entities (both general and parameter) are particularly useful when used to include one
file inside another.

3.7.1. Using general entities to include files

Suppose you have some content for an SGML book organized into files, one file per
chapter, called chapterl.xml , chapter2.xml ,and so forth, with a book.xml file that will
contain these chapters.

In order to use the contents of these files as the values for your entities, you declare them
with the SYSTEM keyword. This directs the SGML parser to use the contents of the named
file as the value of the entity.

3.12. Using general entities to include files

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0//EN" [
<!ENTITY chapter.l SYSTEM "chapterl.xml">
<!ENTITY chapter.2 SYSTEM "chapter2.xml">
<!ENTITY chapter.3 SYSTEM "chapter3.xml">

1>

<html>

&chapter.1;

&chapter.2;

&chapter.3;
</html>

25

Using parameter entities to include files

##

O When using general entities to include other files within a
document, the files being included (chapterl.xml , chapter2.xml ,
and so on) must not start with a DOCTYPE declaration. This is a
syntax error.

3.7.2. Using parameter entities to include files

Recall that parameter entities can only be used inside an SGML context. Why then would
you want to include a file within an SGML context?

You can use this to ensure that you can reuse your general entities.

Suppose that you had many chapters in your document, and you reused these chapters
in two different books, each book organizing the chapters in a different fashion.

You could list the entities at the top of each book, but this quickly becomes cumbersome
to manage.

Instead, place the general entity definitions inside one file, and use a parameter entity to
include that file within your document.

3.13. Using parameter entities to include files

First, place your entity definitions in a separate file, called chapters.ent . This
file contains the following:

<!ENTITY chapter.l SYSTEM "chapterl.xml">
<!ENTITY chapter.2 SYSTEM "chapter2.xml">
<!ENTITY chapter.3 SYSTEM "chapter3.xml">

Now create a parameter entity to refer to the contents of the file. Then use the
parameter entity to load the file into the document, which will then make all the
general entities available for use. Then use the general entities as before:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0//EN" [
<!ENTITY % chapters SYSTEM "chapters.ent">
%chapters;

1>

26

3. SGML Primer

3.7.3. For you to do...
3.7.3.1. Use general entities to include files

1. Create three files, paral.xml , para2.xml , and para3.xml .

Put content similar to the following in each file:

2. Edit example.xml so that it looks like this:

3. Produce example.html by normalizing example.xml .

4, Load example.html into your web browser, and confirm that the paran.xmtl files
have been included in example.html .

Marked sections

3.7.3.2. Use parameter entities to include files

##
@ You must have taken the previous steps first.

1. Edit example.xml so that it looks like this:

2. Create anew file, entities.xml , with this content:

3. Produce example.html by normalizing example.xml .

4. Load example.html into your web browser, and confirm that the paran.xml files
have been included in example.html .

3.8. Marked sections

SGML provides a mechanism to indicate that particular pieces of the document should be
processed in a special way. These are termed “marked sections”.

28

3. SGML Primer

3.14. Structure of a marked section

<![KEYWORD [
Contents of marked section
11>

As you would expect, being an SGML construct, a marked section starts with <!,

The first square bracket begins to delimit the marked section.

KEYWORD describes how this marked section should be processed by the parser.

The second square bracket indicates that the content of the marked section starts here.

The marked section is finished by closing the two square brackets, and then returning to
the document context from the SGML context with >.

3.8.1. Marked section keywords
3.8.1.1. CDATA, RCDATA

These keywords denote the marked sections content model, and allow you to change it
from the default.

When an SGML parser is processing a document it keeps track of what is called the
“content model”.

Briefly, the content model describes what sort of content the parser is expecting to see,
and what it will do with it when it finds it.

The two content models you will probably find most useful are CDATA and RCDATA.

CDATA is for “Character Data”. If the parser is in this content model then it is expecting to
see characters, and characters only. In this model the < and & symbols lose their special
status, and will be treated as ordinary characters.

RCDATA is for “Entity references and character data” If the parser is in this content model
then it is expecting to see characters and entities. < loses its special status, but & will still
be treated as starting the beginning of a general entity.

This is particularly useful if you are including some verbatim text that contains lots of <
and & characters. While you could go through the text ensuring that every < is converted

29

Marked section keywords

to a < and every & is converted to a ∓, it can be easier to mark the section as
only containing CDATA. When the SGML parser encounters this it will ignore the < and
& symbols embedded in the content.

##

E When you use CDATA or RCDATA in examples of text marked up in
SGML, keep in mind that the content of CDATA is not validated. You
have to check the included SGML text using other means. You could,
for example, write the example in another document, validate the
example code, and then paste it to your CDATA content.

3.15. Using a CDATA marked section

<para>Here is an example of how you would include some text
that contained many <literal><</literal>
and <literal>&</literal> symbols. The sample
text is a fragment of HTML. The surrounding text (<para> and
<programlisting>) are from DocBook.</para>

<programlisting>
<! [CDATAI
<p>This is a sample that shows you some of the elements o

within

HTML. Since the angle brackets are used so many times, o
it is

simpler to say the whole example is a CDATA marked o
section

than to use the entity names for the left and right angle

brackets throughout.</p>

This is a listitem
This is a second listitem
This is a third listitem</1li>

<p>This is the end of the example.</p>
-11>
</programlisting>

If you look at the source for this document you will see this technique used
throughout.

30

3. SGML Primer

3.8.1.2. INCLUDE and IGNORE

If the keyword is INCLUDE then the contents of the marked section will be processed. If
the keyword is IGNORE then the marked section is ignored and will not be processed. It
will not appear in the output.

3.16. Using mcwoe and renore in marked sections

<![INCLUDE [
This text will be processed and included.
11>

<![IGNORE [
This text will not be processed or included.
11>

By itself, this is not too useful. If you wanted to remove text from your document you
could cut it out, or wrap it in comments.

It becomes more useful when you realize you can use parameter entities to control this.
Remember that parameter entities can only be used in SGML contexts, and the keyword
of a marked section is an SGML context.

For example, suppose that you produced a hard-copy version of some documentation and
an electronic version. In the electronic version you wanted to include some extra content
that was not to appear in the hard-copy.

Create a parameter entity, and set its value to INCLUDE. Write your document, using
marked sections to delimit content that should only appear in the electronic version. In
these marked sections use the parameter entity in place of the keyword.

When you want to produce the hard-copy version of the document, change the parameter
entity's value to IGNORE and reprocess the document.

3.17. Using a parameter entity to control a marked
section

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0//EN" [
<!ENTITY % electronic.copy "INCLUDE">
11>

31

For you to do...

When producing the hard-copy version, change the entity's definition to:

On reprocessing the document, the marked sections that use %electronic.copy
as their keyword will be ignored.

3.8.2. For you to do...

1. Create a new file, section.xml , that contains the following:

2. Normalize this file using sgmlnorm(1) and examine the output. Notice which
paragraphs have appeared, which have disappeared, and what has happened to the
content of the CDATA marked section.

32

http://www.FreeBSD.org/cgi/man.cgi?query=sgmlnorm&sektion=1

3. SGML Primer

3. Change the definition of the text.output entity from INCLUDE to IGNORE. Re-
normalize the file, and examine the output to see what has changed.

3.9. Conclusion

That is the conclusion of this SGML primer. For reasons of space and complexity several
things have not been covered in depth (or at all). However, the previous sections cover
enough SGML for you to be able to follow the organization of the FDP documentation.

33

4. SGML Markup

This chapter describes the two markup languages you will encounter when you
contribute to the FreeBSD documentation project. Each section describes the markup
language, and details the markup that you are likely to want to use, or that is already in
use.

These markup languages contain a large number of elements, and it can be confusing
sometimes to know which element to use for a particular situation. This section goes
through the elements you are most likely to need, and gives examples of how you would
use them.

This is not an exhaustive list of elements, since that would just reiterate the
documentation for each language. The aim of this section is to list those elements more
likely to be useful to you. If you have a question about how best to markup a particular
piece of content, please post it to the FreeBSD documentation project ####.

@ Inline vs. block

In the remainder of this document, when describing elements, inline
means that the element can occur within a block element, and does
not cause a line break. A block element, by comparison, will cause a
line break (and other processing) when it is encountered.

4.1. HTML

HTML, the HyperText Markup Language, is the markup language of choice on the World
Wide Web. More information can be found at <URL:http://www.w3.0rg/ >.

HTML is used to markup pages on the FreeBSD web site. It should not (generally) be used to
mark up other documentation, since DocBook offers a far richer set of elements to choose
from. Consequently, you will normally only encounter HTML pages if you are writing for
the web site.

HTML has gone through a number of versions, 1, 2, 3.0, 3.2, and the latest, 4.0 (available
in both strict and loose variants).

The HTML DTDs are available from the ports collection in the textproc/html port. They
are automatically installed as part of the textproc/docproj port.

http://lists.FreeBSD.org/mailman/listinfo/freebsd-doc
http://www.w3.org/
http://www.freebsd.org/cgi/url.cgi?ports/textproc/html/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/textproc/docproj/pkg-descr

Formal Public Identifier (FPI)

4.1.1. Formal Public Identifier (FPI)

There are a number of HTML FPIs, depending upon the version (also known as the level)
of HTML that you want to declare your document to be compliant with.

The majority of HTML documents on the FreeBSD web site comply with the loose version
of HTML 4.0.

PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"

4.1.2. Sectional elements

An HTML document is normally split into two sections. The first section, called the head,
contains meta-information about the document, such as its title, the name of the author,
the parent document, and so on. The second section, the body, contains the content that
will be displayed to the user.

These sections are indicated with head and body elements respectively. These elements
are contained within the top-level html element.

4.1, Normal HTML document structure

<html>
<head>
<title>The document's title </title>
</head>

<body>

</body>
</html>

4.1.3. Block elements

4.1.3.1. Headings

HTML allows you to denote headings in your document, at up to six different levels.
The largest and most prominent heading is h1, then h2, continuing down to h6.

The element's content is the text of the heading.

36

4, SGML Markup

4.2, n1, n2, etc.

Use:

Generally, an HTML page should have one first level heading (h1). This can contain many
second level headings (h2), which can in turn contain many third level headings. Each hn
element should have the same element, but one further up the hierarchy, preceding it.
Leaving gaps in the numbering is to be avoided.

4.3, Bad ordering of mn elements

Use:

4.1.3.2. Paragraphs

HTML supports a single paragraph element, p.

37

Block elements

4.4, p
Use:

<p>This is a paragraph. It can contain just about any
other element.</p>

4.1.3.3. Block quotations

A block quotation is an extended quotation from another document that should not
appear within the current paragraph.

4.5, blockquote
Use:
<p>A small excerpt from the US Constitution:</p>

<blockquote>We the People of the United States, in Order to o
form

a more perfect Union, establish Justice, insure domestic

Tranquility, provide for the common defence, promote the o
general

Welfare, and secure the Blessings of Liberty to ourselves o
and our

Posterity, do ordain and establish this Constitution for the

United States of America.</blockquote>

4.1.3.4. Lists
You can present the user with three types of lists, ordered, unordered, and definition.

Typically, each entry in an ordered list will be numbered, while each entry in an
unordered list will be preceded by a bullet point. Definition lists are composed of two
sections for each entry. The first section is the term being defined, and the second section
is the definition of the term.

Ordered lists are indicated by the ol element, unordered lists by the ul element, and
definition lists by the dl element.

38

4, SGML Markup

Ordered and unordered lists contain listitems, indicated by the 1i element. A listitem can
contain textual content, or it may be further wrapped in one or more p elements.

Definition lists contain definition terms (dt) and definition descriptions (dd). A definition
term can only contain inline elements. A definition description can contain other block
elements.

##4.6. L and ol

Use:

4.7, Definition lists with dau

Use

39

Block elements

4.1.3.5. Pre-formatted text
You can indicate that text should be shown to the user exactly as it is in the file. Typically,
this means that the text is shown in a fixed font, multiple spaces are not merged into one,

and line breaks in the text are significant.

In order to do this, wrap the content in the pre element.

4.8. pre

You could use pre to mark up an email message:

Keep in mind that < and & still are recognized as special characters in pre-
formatted text. This is why the example shown had to use < instead of <. For
consistency, > was used in place of >, too. Watch out for the special characters

40

4, SGML Markup

that may appear in text copied from a plain-text source, e.g., an email message
or program code.

4.1.3.6. Tables

##

@ Most text-mode browsers (such as Lynx) do not render tables
particularly effectively. If you are relying on the tabular display
of your content, you should consider using alternative markup to
prevent confusion.

Mark up tabular information using the table element. A table consists of one or more
table rows (tr), each containing one or more cells of table data (td). Each cell can contain
other block elements, such as paragraphs or lists. It can also contain another table (this
nesting can repeat indefinitely). If the cell only contains one paragraph then you do not
need to include the p element.

4.9, Simple use of tabte

Use:
<p>This is a simple 2x2 table.</p>

<table>
<tr>
<td>Top left cell</td>

<td>Top right cell</td>
</tr>

<tr>
<td>Bottom left cell</td>

<td>Bottom right cell</td>
</tr>
</table>

41

Block elements

A cell can span multiple rows and columns. To indicate this, add the rowspan and/or
colspan attributes, with values indicating the number of rows of columns that should
be spanned.

4.10. Using rowspan

Use:

##4.11. USiI’lg colspan

Use:

42

4, SGML Markup

4.12. Using rowspan and cotspan together

Use:

4.1.4. In-line elements
4.1.4.1. Emphasizing information

You have two levels of emphasis available in HTML, em and strong. em is for a normal
level of emphasis and strong indicates stronger emphasis.

Typically, em is rendered in italic and strong is rendered in bold. This is not always the
case, however, and you should not rely on it.

4.13. em and strong

Use:

43

In-line elements

this has been strongly emphasized.</p>

4.1.4.2. Bold and italics

Because HTML includes presentational markup, you can also indicate that particular
content should be rendered in bold or italic. The elements are b and i respectively.

##414.pand i

<p>This is in bold, while <i>this</i> is
in italics.</p>

4.1.4.3. Indicating fixed pitch text

If you have content that should be rendered in a fixed pitch (typewriter) typeface, use
tt (for “teletype”).

4,15, tt
Use:
<p>This document was originally written by

Nik Clayton, who can be reached by email as
<tt>nik@FreeBSD.org</tt>.</p>

4.1.4.4. Content size

You can indicate that content should be shown in a larger or smaller font. There are three
ways of doing this.

1. Use big and small around the content you wish to change size. These tags can be
nested, so <big><big>This is much bigger</big></big> is possible.

2. Use font with the size attribute set to +1 or -1 respectively. This has the same effect
as using big or small. However, the use of this approach is deprecated.

3. Use font with the size attribute set to a number between 1 and 7. The default font
size is 3. This approach is deprecated.

44

4, SGML Markup

4.16. big, small, and font
The following fragments all do the same thing.

<p>This text is <small>slightly smaller</small>. But
this text is <big>slightly bigger</big>.</p>

<p>This text is slightly smaller. But
this text is slightly bigger</font.</p>

<p>This text is slightly smaller. But
this text is slightly bigger.</p>

4.1.5. Links

##
@ Links are also in-line elements.

4.1.5.1. Linking to other documents on the WWW

In order to include a link to another document on the WWW you must know the URL of
the document you want to link to.

The link is indicated with a, and the href attribute contains the URL of the target
document. The content of the element becomes the link, and is normally indicated to the
user in some way (underlining, change of color, different mouse cursor when over the
link, and so on).

##4,17. USil’lg
Use:

<p>More information is available at the
FreeBSD web site.</p>

These links will take the user to the top of the chosen document.

45

Links

4.1.5.2. Linking to other parts of documents

Linking to a point within another document (or within the same document) requires that
the document author include anchors that you can link to.

Anchors are indicated with a and the name attribute instead of href.

4,18. USil’lg
Use:

<p>This paragraph can be referenced
in other links with the name <tt>paral</tt>.</p>

To link to a named part of a document, write a normal link to that document, but include
the name of the anchor after a # symbol.

4.19. Linking to a named part of another document
Assume that the paral example resides in a document called foo.html.
<p>More information can be found in the

first paragraph of
<tt>foo.html</tt>.</p>

If you are linking to a named anchor within the same document then you can omit the
document's URL, and just include the name of the anchor (with the preceding #).

4.20. Linking to a named part of the same document
Assume that the paral example resides in this document:
<p>More information can be found in the

first paragraph of this
document.</p>

46

4, SGML Markup

4.2. DocBook

DocBook was originally developed by HaL Computer Systems and O'Reilly & Associates
to be a DTD for writing technical documentation *. Since 1998 it is maintained by the
DocBook Technical Committee. As such, and unlike LinuxDoc and HTML, DocBook is very
heavily oriented towards markup that describes what something is, rather than describing
how it should be presented.

formal VS. informal
@ Some elements may exist in two forms, formal and informal.

Typically, the formal version of the element will consist of a title
followed by the informal version of the element. The informal
version will not have a title.

The DocBook DTD is available from the ports collection in the textproc/docbook port. It
is automatically installed as part of the textproc/docproj port.

4.2.1. FreeBSD extensions

The FreeBSD Documentation Project has extended the DocBook DTD by adding some new
elements. These elements serve to make some of the markup more precise.

Where a FreeBSD specific element is listed below it is clearly marked.

Throughout the rest of this document, the term “DocBook” is used to mean the FreeBSD
extended DocBook DTD.

##

@ There is nothing about these extensions that is FreeBSD specific, it
was just felt that they were useful enhancements for this particular
project. Should anyone from any of the other *nix camps (NetBSD,
OpenBSD, Linux, ...) be interested in collaborating on a standard
DocBook extension set, please get in touch with Documentation
Engineering Team <doceng@FreeBSD.org >.

The FreeBSD extensions are not (currently) in the ports collection. They are stored in the
FreeBSD CVS tree, as doc/share/xml/freebsd.dtd.

1A short history can be found under http://www.oasis-open.org/committees/docbook/intro.shtml.

47

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=docbook
http://www.freebsd.org/cgi/url.cgi?ports/textproc/docbook/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/textproc/docproj/pkg-descr
mailto:doceng@FreeBSD.org
http://www.FreeBSD.org/cgi/cvsweb.cgi/doc/share/xml/freebsd.dtd
http://www.oasis-open.org/committees/docbook/intro.shtml

Formal Public Identifier (FPI)

4.2.2. Formal Public Identifier (FPI)

In compliance with the DocBook guidelines for writing FPIs for DocBook customizations,
the FPI for the FreeBSD extended DocBook DTD is:

PUBLIC "-//FreeBSD//DTD DocBook V4.1-Based Extension//EN"

4.2.3. Document structure

DocBook allows you to structure your documentation in several ways. In the FreeBSD
Documentation Project we are using two primary types of DocBook document: the book
and the article.

A book is organized into chapters. This is a mandatory requirement. There may be
parts between the book and the chapter to provide another layer of organization. The
Handbook is arranged in this way.

A chapter may (or may not) contain one or more sections. These are indicated with the
sectl element. If a section contains another section then use the sect2 element, and so
on, up to sect5.

Chapters and sections contain the remainder of the content.

An article is simpler than a book, and does not use chapters. Instead, the content of an
article is organized into one or more sections, using the same sectl (and sect2 and so
on) elements that are used in books.

Obviously, you should consider the nature of the documentation you are writing in order
to decide whether it is best marked up as a book or an article. Articles are well suited
to information that does not need to be broken down into several chapters, and that is,
relatively speaking, quite short, at up to 20-25 pages of content. Books are best suited to
information that can be broken up into several chapters, possibly with appendices and
similar content as well.

The FreeBSD tutorials are all marked up as articles, while this document, the FreeBSD
FAQ, and the FreeBSD Handbook are all marked up as books.

4.2.3.1. Starting a book

The content of the book is contained within the book element. As well as containing
structural markup, this element can contain elements that include additional information
about the book. This is either meta-information, used for reference purposes, or

additional content used to produce a title page.

This additional information should be contained within bookinfo .

48

../../../../docs.html
../../../../doc/zh_TW.Big5/books/faq/index.html
../../../../doc/zh_TW.Big5/books/faq/index.html
../../../../doc/zh_TW.Big5/books/handbook/index.html

4, SGML Markup

4.21. Boilerplate book with bookinfo

4.2.3.2. Starting an article

The content of the article is contained within the article element. As well as containing
structural markup, this element can contain elements that include additional information
about the article. This is either meta-information, used for reference purposes, or
additional content used to produce a title page.

This additional information should be contained within articleinfo .

4,22, Boilerplate article With articleinfo

49

Document structure

4.2.3.3. Indicating chapters

Use chapter to mark up your chapters. Each chapter has a mandatory title. Articles do
not contain chapters, they are reserved for books.

4.23. A simple chapter

A chapter cannot be empty; it must contain elements in addition to title. If you need to
include an empty chapter then just use an empty paragraph.

50

4, SGML Markup

4,24, Empty chapters

4.2.3.4. Sections below chapters

In books, chapters may (but do not need to) be broken up into sections, subsections, and
so on. In articles, sections are the main structural element, and each article must contain
at least one section. Use the sectn element. The n indicates the section number, which
identifies the section level.

The first sectn is sectl. You can have one or more of these in a chapter. They can contain
one or more sect2 elements, and so on, down to sect5.

4,25, Sections in chapters

51

Document structure

##

S This example includes section numbers in the section titles. You
should not do this in your documents. Adding the section numbers
is carried out by the stylesheets (of which more later), and you do
not need to manage them yourself.

4.2.3.5. Subdividing using parts

You can introduce another layer of organization between book and chapter with one or
more parts. This cannot be done in an article.

4, SGML Markup

4.2.4. Block elements
4.2.4.1. Paragraphs

DocBook supports three types of paragraphs: formalpara , para, and simpara.

Most of the time you will only need to use para. formalpara includes a title element,

and simpara disallows some elements from within para. Stick with para.

4.26. para
Use:

<para>This is a paragraph. It can contain just about any
other element.</para>

Appearance:

This is a paragraph. It can contain just about any other element.

4.2.4.2. Block quotations

A block quotation is an extended quotation from another document that should not

appear within the current paragraph. You will probably only need it infrequently.

Blockquotes can optionally contain a title and an attribution (or they can be left untitled

and unattributed).

##4.27. blockquote
Use:
<para>A small excerpt from the US Constitution:</para>
<blockquote>
<title>Preamble to the Constitution of the United States</
title>
<attribution>Copied from a web site somewhere</attribution>
<para>We the People of the United States, in Order to form o
a more perfect

Union, establish Justice, insure domestic Tranquility, o
provide for the

53

Block elements

common defence, promote the general Welfare, and secure o
the Blessings

of Liberty to ourselves and our Posterity, do ordain and o
establish this

Constitution for the United States of America.</para>
</blockquote>

Appearance:

Preamble to the Constitution of the United States

We the People of the United States, in Order to form a more
perfect Union, establish Justice, insure domestic Tranquility,
provide for the common defence, promote the general
Welfare, and secure the Blessings of Liberty to ourselves and
our Posterity, do ordain and establish this Constitution for the
United States of America.

—Copied from a web site somewhere

4.2.4.3. Tips, notes, warnings, cautions, important information and
sidebars.

You may need to include extra information separate from the main body of the text.
Typically this is “meta” information that the user should be aware of.

Depending on the nature of the information, one of tip, note, warning, caution, and
important should be used. Alternatively, if the information is related to the main text
but is not one of the above, use sidebar.

The circumstances in which to choose one of these elements over another is unclear. The
DocBook documentation suggests:

A Note is for information that should be heeded by all readers.
* AnImportant element is a variation on Note.
* A Caution is for information regarding possible data loss or software damage.

A Warning is for information regarding possible hardware damage or injury to life or
limb.

4.28. warning

Use:

54

4, SGML Markup

<warning>
<para>Installing FreeBSD may make you want to delete ¢
Windows from your
hard disk.</para>
</warning>

##
O Installing FreeBSD may make you want to delete Windows from
your hard disk.

4.2.4.4. Lists and procedures

You will often need to list pieces of information to the user, or present them with a
number of steps that must be carried out in order to accomplish a particular goal.

In order to do this, use itemizedlist , orderedlist , or procedure >

itemizedlist and orderedlist are similar to their counterparts in HTML, ul and ol.
Each one consists of one or more listitem elements, and each listitem contains one or
more block elements. The listitem elements are analogous to HTML's i tags. However,
unlike HTML, they are required.

procedure is slightly different. It consists of steps, which may in turn consists of more
steps or substeps. Each step contains block elements.

4.29. itemizedlist , orderedlist , and procedure
Use:

<itemizedlist>
<listitem>
<para>This is the first itemized item.</para>
</listitem>

<listitem>
<para>This is the second itemized item.</para>
</listitem>
</itemizedlist>

“There are other types of list element in DocBook, but we are not concerned with those at the moment.

55

Block elements

Appearance:

« This is the first itemized item.
+ This is the second itemized item.
1. This is the first ordered item.

2. This is the second ordered item.

1. Do this.

2. Then do this.

3. Andnow do this.

4.2.4.5. Showing file samples

If you want to show a fragment of a file (or perhaps a complete file) to the user, wrap it
in the programlisting element.

White space and line breaks within programlisting are significant. In particular, this
means that the opening tag should appear on the same line as the first line of the output,
and the closing tag should appear on the same line as the last line of the output, otherwise
spurious blank lines may be included.

56

4, SGML Markup

4.30. programlisting
Use:

<para>When you have finished, your program should look like
this:</para>

<programlisting>#include <stdio.h>
int

main(void)

{

printf("hello, world\n");
}</programlisting>

Notice how the angle brackets in the #include line need to be referenced by their
entities instead of being included literally.

Appearance:

When you have finished, your program should look like this:
#include <stdio.h>

int

main(void)

{
}

printf("hello, world\n");

4.2.4.6. Callouts

A callout is a mechanism for referring back to an earlier piece of text or specific position
within an earlier example without linking to it within the text.

To do this, mark areas of interest in your example (programlisting , literallayout ,
or whatever) with the co element. Each element must have a unique id assigned to it.
After the example include a calloutlist that refers back to the example and provides
additional commentary.

4,31, co and calloutlist

<para>When you have finished, your program should look like
this:</para>

57

Block elements

Appearance:

When you have finished, your program should look like this:

1

© Includes the standard 10 header file.
@ Specifies that main() returns an int.
© Theprintf() call that writes hello, world to standard output.

4.2.4.7. Tables

Unlike HTML, you do not need to use tables for layout purposes, as the stylesheet handles
those issues for you. Instead, just use tables for marking up tabular data.

In general terms (and see the DocBook documentation for more detail) a table (which
can be either formal or informal) consists of a table element. This contains at least one

58

4, SGML Markup

tgroup element, which specifies (as an attribute) the number of columns in this table
group. Within the tablegroup you can then have one thead element, which contains
elements for the table headings (column headings), and one tbody which contains the
body of the table.

Both tgroup and thead contain row elements, which in turn contain entry elements.
Each entry element specifies one cell in the table.

4,32, informaltable

Use:

Appearance:

Row 1, column 1 Row 1, column 2

Row 2, column 1 Row 2, column 2

Always use the pgwide attribute with a value of 1 with the informaltable element. A
bug in Internet Explorer can cause the table to render incorrectly if this is omitted.

59

Block elements

If you do not want a border around the table the frame attribute can be added to the
informaltable element with a value of none (i.e., <informaltable frame="none">).

4.33. Tables where frame="none"

Appearance:
This is column head 1 This is column head 2
Row 1, column 1 Row 1, column 2
Row 2, column 1 Row 2, column 2

4.2.4.8. Examples for the user to follow

A lot of the time you need to show examples for the user to follow. Typically, these
will consist of dialogs with the computer; the user types in a command, the user gets a
response back, they type in another command, and so on.

A number of distinct elements and entities come into play here.

screen
Everything the user sees in this example will be on the computer screen, so the next
element is screen.

Within screen, white space is significant.

prompt, &rompt.root; and &prompt.user;
Some of the things the user will be seeing on the screen are prompts from the
computer (either from the operating system, command shell, or application). These
should be marked up using prompt .

As a special case, the two shell prompts for the normal user and the root user have
been provided as entities. Every time you want to indicate the user is at a shell
prompt, use one of &rompt.root; and &rompt.user; as necessary. They do not
need to be inside prompt.

##
@ &prompt.root; and &prompt.user; are FreeBSD extensions
to DocBook, and are not part of the original DTD.

60

4, SGML Markup

userinput
When displaying text that the user should type in, wrap it in userinput tags. It will
probably be displayed differently to the user.

4,34, screen, prompt, and userinput
Use:

<screen>&prompt.user; <userinput>ls -1</userinput>
fool

foo2

foo3

&prompt.user; <userinput>ls -1 | grep foo2</userinput>
foo2

&prompt.user; <userinput>su</userinput>
<prompt>Password: </prompt>

&prompt.root; <userinput>cat foo2</userinput>

This is the file called 'fo02'</screen>

Appearance:

% s -1

fool

foo02

foo3

% s -1 | grep foo2

foo02

% su

Password:

cat foo2

This is the file called 'foo2'

##

E Even though we are displaying the contents of the file foo2, it is
not marked up as programlisting . Reserve programlisting for
showing fragments of files outside the context of user actions.

4.2.5. In-line elements
4.2.5.1. Emphasizing information

When you want to emphasize a particular word or phrase, use emphasis . This may be
presented as italic, or bold, or might be spoken differently with a text-to-speech system.

61

In-line elements

There is no way to change the presentation of the emphasis within your document, no
equivalent of HTML's b and i. If the information you are presenting is important then
consider presenting it in important rather than emphasis .

4,35, emphasis

Use:

<para>FreeBSD is without doubt <emphasis>the</emphasis>
premiere Unix like operating system for the Intel o

architecture.</para>

Appearance:

FreeBSD is without doubt the premiere Unix like operating system for the Intel
architecture.

4.2.5.2. Quotations

To quote text from another document or source, or to denote a phrase that is used
figuratively, use quote . Within a quote tag, you may use most of the markup tags available
for normal text.

4.36. Quotations
Use:
<para>However, make sure that the search does not go beyond the
<quote>boundary between local and public administration</
quote>,
as RFC 1535 calls it.</para>

Appearance:

However, make sure that the search does not go beyond the “boundary between
local and public administration”, as RFC 1535 calls it.

4.2.5.3. Keys, mouse buttons, and combinations

To refer to a specific key on the keyboard, use keycap. To refer to a mouse button, use
mousebutton . And to refer to combinations of key presses or mouse clicks, wrap them
all in keycombo .

62

4, SGML Markup

keycombo has an attribute called action, which may be one of click, double-click,
other, press, seq, or simul. The last two values denote whether the keys or buttons
should be pressed in sequence, or simultaneously.

The stylesheets automatically add any connecting symbols, such as +, between the key
names, when wrapped in keycombo .

4,37. Keys, mouse buttons, and combinations
Use:

<para>To switch to the second virtual terminal, press
<keycombo action="simul"><keycap>Alt</keycap>
<keycap>F1l</keycap></keycombo>.</para>

<para>To exit <command>vi</command> without saving your work, o
type
<keycombo action="seq"><keycap>Esc</keycap><keycap>:</keycap>
<keycap>q</keycap><keycap>!</keycap></keycombo>.</para>

<para>My window manager is configured so that
<keycombo action="simul"><keycap>Alt</keycap>
<mousebutton>right</mousebutton>
</keycombo> mouse button is used to move windows.</para>
Appearance:
To switch to the second virtual terminal, press Alt+F1.

To exit vi without saving your work, type Esc: q !.

My window manager is configured so that Alt+right mouse button is used to move
windows.

4.2.5.4. Applications, commands, options, and cites

You will frequently want to refer to both applications and commands when writing for
the Handbook. The distinction between them is simple: an application is the name for a
suite (or possibly just 1) of programs that fulfil a particular task. A command is the name
of a program that the user can run.

In addition, you will occasionally need to list one or more of the options that a command
might take.

Finally, you will often want to list a command with its manual section number, in the
“command(number)” format so common in Unix manuals.

63

In-line elements

Mark up application names with application .

When you want to list a command with its manual section number (which should be
most of the time) the DocBook element is citerefentry . This will contain a further two
elements, refentrytitle andmanvolnum.The content of refentrytitle isthe name of
the command, and the content of manvolnum is the manual page section.

This can be cumbersome to write, and so a series of general entities have been created to
make this easier. Each entity takes the form &man.manual-page.manual-section;

The file that contains these entities is in doc/share/xml/man-refs.ent , and can be
referred to using this FPI:

PUBLIC "-//FreeBSD//ENTITIES DocBook Manual Page Entities//EN"

Therefore, the introduction to your documentation will probably look like this:

<!DOCTYPE book PUBLIC "-//FreeBSD//DTD DocBook V4.1-Based Extension//
ENll [

<!ENTITY % man PUBLIC "-//FreeBSD//ENTITIES DocBook Manual Page
Entities//EN">
%man ;

1>

Use command when you want to include a command name “in-line” but present it as
something the user should type in.

Use option to mark up the options which will be passed to a command.

When referring to the same command multiple times in close proximity it is preferred to
use the &man. command. section; notation to markup the first reference and use command
to markup subsequent references. This makes the generated output, especially HTML,
appear visually better.

This can be confusing, and sometimes the choice is not always clear. Hopefully this
example makes it clearer.

4,38, Applications, commands, and options.

Use:

<para><application>Sendmail</application> is the most

64

4, SGML Markup

widely used Unix mail application.</para>

<para><application>Sendmail</application> includes the
<citerefentry>
<refentrytitle>sendmail</refentrytitle>
<manvolnum>8</manvolnum>
</citerefentry>, &man.mailqg.8;, and &man.newaliases.8;
programs.</para>

<para>0One of the command line parameters to <citerefentry>
<refentrytitle>sendmail</refentrytitle>
<manvolnum>8</manvolnum>
</citerefentry>, <option>-bp</option>, will display the o
current

status of messages in the mail queue. Check this on the o
command

line by running <command>sendmail -bp</command>.</para>
Appearance:
Sendmail is the most widely used Unix mail application.
Sendmail includes the sendmail(8), mailq(8), and newaliases(8) programs.
One of the command line parameters to sendmail(8), -bp, will display the current

status of messages in the mail queue. Check this on the command line by running
sendmail -bp.

##
@ Notice how the &man.command.section; notation is easier to
follow.

4.2.5.5. Files, directories, extensions

Whenever you wish to refer to the name of a file, a directory, or a file extension, use
filename.

4,39, filename

Use:

<para>The SGML source for the Handbook in English can be

65

http://www.FreeBSD.org/cgi/man.cgi?query=sendmail&sektion=8
http://www.FreeBSD.org/cgi/man.cgi?query=mailq&sektion=8
http://www.FreeBSD.org/cgi/man.cgi?query=newaliases&sektion=8
http://www.FreeBSD.org/cgi/man.cgi?query=sendmail&sektion=8

In-line elements

found in <filename>/usr/doc/en/handbook/</filename>. The o
first

file is called <filename>handbook.xml</filename> in that

directory. You should also see a <filename>Makefile</
filename>

and a number of files with a <filename>.ent</filename>

extension.</para>

Appearance:
The SGML source for the Handbook in English can be found in /usr/doc/en/

handbook/ . The first file is called handbook.xml in that directory. You should
also see a Makefile and a number of files with a .ent extension.

4.2.5.6. The name of ports

FreeBSD extension
@ These elements are part of the FreeBSD extension to DocBook, and

do not exist in the original DocBook DTD.

You might need to include the name of a program from the FreeBSD Ports Collection in the
documentation. Use the filename tag with the role attribute set to package to identify
these. Since ports can be installed in any number of locations, only include the category
and the port name; do not include /usr/ports .

4.40. filename tag Wlth package role
Use:

<para>Install the <filename role="package">net/ethereal</
filename> port to view network traffic.</para>

Appearance:

Install the net/ethereal port to view network traffic.

66

http://www.freebsd.org/cgi/url.cgi?ports/net/ethereal/pkg-descr

4, SGML Markup

4.2.5.7. Devices

FreeBSD extension
S These elements are part of the FreeBSD extension to DocBook, and

do not exist in the original DocBook DTD.

When referring to devices you have two choices. You can either refer to the device as it
appears in /dev, or you can use the name of the device as it appears in the kernel. For
this latter course, use devicename .

Sometimes you will not have a choice. Some devices, such as networking cards, do not
have entries in /dev, or the entries are markedly different from those entries.

4,41, devicename
Use:

<para><devicename>sio</devicename> is used for serial

communication in FreeBSD. <devicename>sio</devicename> ¢
manifests

through a number of entries in <filename>/dev</filename>, o
including

<filename>/dev/ttydO</filename> and <filename>/dev/cuaab</
filename>.</para>

<para>By contrast, the networking devices, such as
<devicename>ed0</devicename> do not appear in <filename>/

dev</filename>.</para>

<para>In MS-DOS, the first floppy drive is referred to as
<devicename>a:</devicename>. In FreeBSD it is
<filename>/dev/fd0</filename>.</para>

Appearance:

sio is used for serial communication in FreeBSD. sio manifests through a number
of entries in /dev, including /dev/ttyd0 and /dev/cuaa0 .

By contrast, the networking devices, such as ed® do not appear in /dev.

In MS-DOS, the first floppy drive is referred to as a:. In FreeBSD it is /dev/fd0 .

67

In-line elements

4.2.5.8. Hosts, domains, IP addresses, and so forth

FreeBSD extension
S These elements are part of the FreeBSD extension to DocBook, and

do not exist in the original DocBook DTD.

You can markup identification information for networked computers (hosts) in several
ways, depending on the nature of the information. All of them use hostid as the element,
with the role attribute selecting the type of the marked up information.

No role attribute, or role="hostname"
With no role attribute (i.e., hostid.../hostid) the marked up information is the
simple hostname, such as freefall or wcarchive. You can explicitly specify this
with role="hostname" .

role="domainname"
The text is a domain name, such as FreeBSD.org or ngo.org.uk . There is no
hostname component.

role="fqdn"
The text is a Fully Qualified Domain Name, with both hostname and domain name
parts.

role="ipaddr"
The text is an IP address, probably expressed as a dotted quad.

role="ip6addr"
The text is an IPv6 address.

role="netmask"
The text is a network mask, which might be expressed as a dotted quad, a
hexadecimal string, or as a / followed by a number.

role="mac"
The text is an Ethernet MAC address, expressed as a series of 2 digit hexadecimal
numbers separated by colons.

4,42, nostid and roles

Use:

68

4, SGML Markup

<para>The local machine can always be referred to by the
name <hostid>localhost</hostid>, which will have the IP ¢
address
<hostid role="ipaddr">127.0.0.1</hostid>.</para>

<para>The <hostid role="domainname">FreeBSD.org</hostid> domain
contains a number of different hosts, including
<hostid role="fqdn">freefall.FreeBSD.org</hostid> and
<hostid role="fqdn">bento.FreeBSD.org</hostid>.</para>

<para>When adding an IP alias to an interface (using
<command>ifconfig</command>) <emphasis>always</emphasis> ¢
use a
netmask of <hostid role="netmask">255.255.255.255</hostid>
(which can also be expressed as <hostid
role="netmask">0xffffffff</hostid>.</para>

<para>The MAC address uniquely identifies every network card

in existence. A typical MAC address looks like <hostid
role="mac">08:00:20:87:ef:d0</hostid>.</para>

Appearance:

The local machine can always be referred to by the name localhost , which will
have the IP address 127.0.0.1.

The FreeBSD.org domain contains a number of different hosts, including
freefall.FreeBSD.org and bento.FreeBSD.org .

When adding an IP alias to an interface (using ifconfig) always use a netmask of
255.255.255.255 (which can also be expressed as Oxffffffff .

The MAC address uniquely identifies every network card in existence. A typical
MAC address looks like 08:00:20:87:ef:d0 .

4.2.5.9. Usernames

3 FreeBSD extension

These elements are part of the FreeBSD extension to DocBook, and
do not exist in the original DocBook DTD.

When you need to refer to a specific username, such as root or bin, use username.

In-line elements

4,43, username
Use:

<para>To carry out most system administration functions you
will need to be <username>root</username>.</para>

Appearance:

To carry out most system administration functions you will need to be root.

4.2.5.10. Describing Makefiles

FreeBSD extension
@ These elements are part of the FreeBSD extension to DocBook, and

do not exist in the original DocBook DTD.

Two elements exist to describe parts of Makefile s, maketarget and makevar.

maketarget identifies a build target exported by a Makefile that can be given as a
parameter to make. makevar identifies a variable that can be set (in the environment, on
the make command line, or within the Makefile) to influence the process.

4,44, maketarget and makevar
Use:

<para>Two common targets in a <filename>Makefile</filename>
are <maketarget>all</maketarget> and <maketarget>clean</
maketarget>.</para>

<para>Typically, invoking <maketarget>all</maketarget> will o
rebuild the

application, and invoking <maketarget>clean</maketarget> o
will remove

the temporary files (<filename>.o</filename> for example) o
created by

the build process.</para>

70

4, SGML Markup

<para><maketarget>clean</maketarget> may be controlled by a
number of
variables, including <makevar>CLOBBER</makevar> and
<makevar>RECURSE</makevar>.</para>

Appearance:
Two common targets in a Makefile are all and clean.

Typically, invoking all will rebuild the application, and invoking clean will
remove the temporary files (.o for example) created by the build process.

clean may be controlled by a number of variables, including CLOBBER and
RECURSE .

4.2.5.11. Literal text

You will often need to include “literal” text in the Handbook. This is text that is excerpted
from another file, or which should be copied from the Handbook into another file
verbatim.

Some of the time, programlisting will be sufficient to denote this text. programlisting
is not always appropriate, particularly when you want to include a portion of a file “in-
line” with the rest of the paragraph.

On these occasions, use literal.

4,45, literal
Use:

<para>The <literal>maxusers 10</literal> line in the kernel
configuration file determines the size of many system ¢
tables, and is
a rough guide to how many simultaneous logins the system will
support.</para>

Appearance:

The maxusers 10 line in the kernel configuration file determines the size of many
system tables, and is a rough guide to how many simultaneous logins the system
will support.

71

In-line elements

4.2.5.12. Showing items that the user must fill in

There will often be times when you want to show the user what to do, or refer to a file,
or command line, or similar, where the user cannot simply copy the examples that you
provide, but must instead include some information themselves.

replaceable isdesigned for this eventuality. Use it inside other elements to indicate parts
of that element's content that the user must replace.

4.46., replaceable
Use:

<informalexample>

<screen>&prompt.user; <userinput>man <replaceable>command</
replaceable></userinput></screen>
</informalexample>

Appearance:

% man command

replaceable can be used in many different elements, including literal. This
example also shows that replaceable should only be wrapped around the
content that the user is meant to provide. The other content should be left alone.

Use:

<para>The <literal>maxusers <replaceable>n</replaceable></
literal>

line in the kernel configuration file determines the size o
of many system

tables, and is a rough guide to how many simultaneous ¢
logins the system will

support.</para>

<para>For a desktop workstation, <literal>32</literal> is a ¢
good value
for <replaceable>n</replaceable>.</para>

Appearance:

The maxusers n line in the kernel configuration file determines the size of many
system tables, and is a rough guide to how many simultaneous logins the system
will support.

For a desktop workstation, 32 is a good value for n.

72

4, SGML Markup

4.2.5.13. Quoting system errors

You might want to show errors generated by FreeBSD. Mark these with errorname . This
indicates the exact error that appears.

Use:

screen>

Appearance:

4.47. errorname

<screen><errorname>Panic: cannot mount root</errorname></

Panic: cannot mount root

4.2.6. Images

A

##

Image support in the documentation is currently extremely
experimental. I think the mechanisms described here are unlikely
to change, but that is not guaranteed.

You will also need to install the graphics/ImageMagick port, which
is used to convert between the different image formats. This is a big
port, and most of it is not required. However, while we are working
on the Makefile s and other infrastructure it makes things easier.
This port is not in the textproc/docproj meta port, you must install
it by hand.

The best example of what follows in practice is the doc/
en_US.IS08859-1/articles/vm-design/ document. If you are
unsure of the description that follows, take a look at the files in that
directory to see how everything hangs together. Experiment with
creating different formatted versions of the document to see how
the image markup appears in the formatted output.

73

http://www.freebsd.org/cgi/url.cgi?ports/graphics/ImageMagick/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/textproc/docproj/pkg-descr

Images

4.2.6.1. Image formats

We currently support two formats for images. The format you should use will depend on
the nature of your image.

For images that are primarily vector based, such as network diagrams, time lines, and
similar, use Encapsulated Postscript, and make sure that your images have the .eps
extension.

For bitmaps, such as screen captures, use the Portable Network Graphic format, and make
sure that your images have the .png extension.

These are the only formats in which images should be committed to the CVS repository.

Use the right format for the right image. It is to be expected that your documentation will
have a mix of EPS and PNG images. The Makefile s ensure that the correct format image
is chosen depending on the output format that you use for your documentation. Do not
commit the same image to the repository in two different formats.

##

A It is anticipated that the Documentation Project will switch to
using the Scalable Vector Graphic (SVG) format for vector images.
However, the current state of SVG capable editing tools makes this
impractical.

4.2.6.2. Markup

The markup for an image is relatively simple. First, markup a mediaobject . The
mediaobject can contain other, more specific objects. We are concerned with two, the
imageobject and the textobject .

You should include one imageobject , and two textobject elements. The imageobject
will point to the name of the image file that will be used (without the extension). The
textobject elements contain information that will be presented to the user as well as,
or instead of, the image.

There are two circumstances where this can happen.

+ When the reader is viewing the documentation in HTML. In this case, each image will
need to have associated alternate text to show the user, typically whilst the image is
loading, or if they hover the mouse pointer over the image.

+ When the reader is viewing the documentation in plain text. In this case, each image
should have an ASCII art equivalent to show the user.

74

4, SGML Markup

An example will probably make things easier to understand. Suppose you have an image,
called figl.png, that you want to include in the document. This image is of a rectangle
with an A inside it. The markup for this would be as follows.

<mediaobject>
<imageobject>
<imagedata fileref="figl"> @
</imageobject>

<textobject>
<literallayout class="monospaced">+--------------- + 8
| A I
LR +</literallayout>
</textobject>

<textobject>
<phrase>A picture</phrase> ©

</textobject>

</mediaobject>

©® Include an imagedata element inside the imageobject element. The fileref
attribute should contain the filename of the image to include, without the extension.
The stylesheets will work out which extension should be added to the filename
automatically.

@ The first textobject should contain a literallayout element, where the class
attribute is set to monospaced . This is your opportunity to demonstrate your ASCII
art skills. This content will be used if the document is converted to plain text.

Notice how the first and last lines of the content of the literallayout elementbutt
up next to the element's tags. This ensures no extraneous white space is included.

® The second textobject should contain a single phrase element. The contents of
this will become the alt attribute for the image when this document is converted
to HTML.

4.2.6.3. Makefile entries

Your images must be listed in the Makefile in the IMAGES variable. This variable should
contain the name of all your source images. For example, if you have created three figures,
figl.eps, fig2.png, fig3.png, then your Makefile should have lines like this in it.

IMAGES= figl.eps fig2.png fig3.png
or

IMAGES= figl.eps
IMAGES+= fig2.png
IMAGES+= fig3.png

75

Links

Again, the Makefile will work out the complete list of images it needs to build your source
document, you only need to list the image files you provided.

4.2.6.4. Images and chapters in subdirectories

You must be careful when you separate your documentation into smaller files (see #3.7.1,
“Using general entities to include files”) in different directories.

Suppose you have a book with three chapters, and the chapters are stored in their own
directories, called chapterl/chapter.xml , chapter2/chapter.xml , and chapter3/
chapter.xml . If each chapter has images associated with it, I suggest you place those
images in each chapter's subdirectory (chapterl/, chapter2/, and chapter3/).

However, if you do this you must include the directory names in the IMAGES variable in
the Makefile, and you must include the directory name in the imagedata element in
your document.

For example, if you have chapterl/figl.png , then chapterl/chapter.xml should
contain:

<mediaobject>
<imageobject>
<imagedata fileref="chapterl/figl"> @
</imageobject>

</mediaobject>
© The directory name must be included in the fileref attribute.

The Makefile must contain:
IMAGES= chapterl/figl.png

Then everything should just work.

4.2.7. Links

##
@ Links are also in-line elements.

76

4, SGML Markup

4.2.7.1. Linking to other parts of the same document

Linking within the same document requires you to specify where you are linking from
(i.e., the text the user will click, or otherwise indicate, as the source of the link) and where
you are linking to (the link's destination).

Each element within DocBook has an attribute called id. You can place text in this
attribute to uniquely name the element it is attached to.

This value will be used when you specify the link source.

Normally, you will only be linking to chapters or sections, so you would add the id
attribute to these elements.

4.48. id on chapters and sections

<chapter id="chapterl">
<title>Introduction</title>

<para>This is the introduction. It contains a subsection,
which is identified as well.</para>

<sectl id="chapterl-sectl">
<title>Sub-sect 1</title>

<para>This is the subsection.</para>
</sectl>
</chapter>

Obviously, you should use more descriptive values. The values must be unique within the
document (i.e., not just the file, but the document the file might be included in as well).
Notice how the id for the subsection is constructed by appending text to the id of the
chapter. This helps to ensure that they are unique.

If you want to allow the user to jump into a specific portion of the document (possibly
in the middle of a paragraph or an example), use anchor. This element has no content,
but takes an id attribute.

4,49, anchor

<para>This paragraph has an embedded
<anchor id="paral">link target in it. It will not show up in

77

Links

the document.</para>

When you want to provide the user with a link they can activate (probably by clicking) to
go to a section of the document that has an id attribute, you can use either xref or link.

Both of these elements have a linkend attribute. The value of this attribute should be
the value that you have used in a id attribute (it does not matter if that value has not yet
occurred in your document; this will work for forward links as well as backward links).

If you use xref then you have no control over the text of the link. It will be generated
for you.

4,50, USil’lg xref

Assume that this fragment appears somewhere in a document that includes the
id example:

<para>More information can be found
in <xref linkend="chapterl">.</para>

<para>More specific information can be found
in <xref linkend="chapterl-sectl">.</para>

The text of the link will be generated automatically, and will look like (emphasized
text indicates the text that will be the link):

More information can be found in Chapter One.

More specific information can be found in the section called Sub-
sect 1.

Notice how the text from the link is derived from the section title or the chapter number.

##

@ This means that you cannot use xref to link to an id attribute on
an anchor element. The anchor has no content, so the xref cannot
generate the text for the link.

78

4, SGML Markup

If you want to control the text of the link then use link. This element wraps content, and
the content will be used for the link.

4.51. Using tink

Assume that this fragment appears somewhere in a document that includes the
id example.

<para>More information can be found in
<link linkend="chapterl">the first chapter</link>.</para>

<para>More specific information can be found in
<link linkend="chapterl-sectl">this</link> section.</para>

This will generate the following (emphasized text indicates the text that will be
the link):

More information can be found in the first chapter.

More specific information can be found in this section.

##

@ That last one is abad example. Never use words like “this” or “here”
as the source for the link. The reader will need to hunt around the
surrounding context to see where the link is actually taking them.

##
@ You can use link to include a link to an id on an anchor element,
since the link content defines the text that will be used for the link.

4.2.7.2. Linking to documents on the WWW

Linking to external documents is much simpler, as long as you know the URL of the
document you want to link to. Use ulink. The url attribute is the URL of the page that
the link points to, and the content of the element is the text that will be displayed for
the user to activate.

79

Links

4.52. ulink

Use:

<para>0f course, you could stop reading this document and
go to the <ulink url="&url.base;/index.html">FreeBSD
home page</ulink> instead.</para>

Appearance:

Of course, you could stop reading this document and go to the FreeBSD home page
instead.

80

../../../../index.html

5. * Stylesheets

SGML says nothing about how a document should be displayed to the user, or rendered
on paper. To do that, various languages have been developed to describe stylesheets,
including DynaText, Panorama, SPICE, JSSS, FOSI, CSS, and DSSSL.

For DocBook, we are using stylesheets written in DSSSL. For HTML we are using CSS.

5.1. * DSSSL

The Documentation Project uses a slightly customized version of Norm Walsh's modular
DocBook stylesheets.

These can be found in textproc/dsssl-docbook-modular.

The modified stylesheets are not in the ports system. Instead they are part of
the Documentation Project source repository, and can be found in doc/share/xml/
freebsd.dsl . It is well commented, and pending completion of this section you are
encouraged to examine that file to see how some of the available options in the standard
stylesheets have been configured in order to customize the output for the FreeBSD
Documentation Project. That file also contains examples showing how to extend the
elements that the stylesheet understands, which is how the FreeBSD specific elements
have been formatted.

5.2. CSS

Cascading Stylesheets (CSS) are a mechanism for attaching style information (font,
weight, size, color, and so forth) to elements in an HTML document without abusing HTML
to do so.

5.2.1. The Web site (HTML documents)

The FreeBSD web site does not currently use CSS. Unfortunately, the look and feel is
constructed using abuses of HTML of varying degrees. This should be fixed, and would be
a good project for someone looking to contribute to the documentation project.

5.2.2. The DocBook documents

The FreeBSD DSSSL stylesheets include a reference to a stylesheet, docbook. css , which
is expected to appear in the same directory as the HTML files. The project-wide CSS file
is copied from doc/share/misc/docbook.css when documents are converted to HTML,
and is installed automatically.

http://www.freebsd.org/cgi/url.cgi?ports/textproc/dsssl-docbook-modular/pkg-descr

6. Structuring documents
under doc/

The doc/ tree is organized in a particular fashion, and the documents that are part of the
FDP are in turn organized in a particular fashion. The aim is to make it simple to add new
documentation into the tree and:

1. make it easy to automate converting the document to other formats;

2. promote consistency between the different documentation organizations, to make it
easier to switch between working on different documents;

3. make it easy to decide where in the tree new documentation should be placed.

In addition, the documentation tree has to accommodate documentation that could be
in many different languages and in many different encodings. It is important that the
structure of the documentation tree does not enforce any particular defaults or cultural
preferences.

6.1. The top level, doc/

There are two types of directory under doc/, each with very specific directory names and
meanings.

Directory: share/

Meaning: Contains files that are not specific to the various translations and encodings
of the documentation. Contains subdirectories to further categorize the information. For
example, the files that comprise the make(1) infrastructure are in share/mk , while the
additional SGML support files (such as the FreeBSD extended DocBook DTD) are in share/
xmL.

Directory: lang.encoding/

Meaning: One directory exists for each available translation and encoding of the
documentation, for example en US.I1508859-1/ and zh TW.Big5/ . The names are long,
but by fully specifying the language and encoding we prevent any future headaches
should a translation team want to provide the documentation in the same language but in
more than one encoding. This also completely isolates us from any problems that might
be caused by a switch to Unicode.

6.2. The lang.encoding/ directories

These directories contain the documents themselves. The documentation is split into up
to three more categories at this level, indicated by the different directory names.

http://www.FreeBSD.org/cgi/man.cgi?query=make&sektion=1

Document specific information

Directory: articles

Contents: Documentation marked up as a DocBook article (or equivalent). Reasonably
short, and broken up into sections. Normally only available as one HTML file.

Directory: books

Contents: Documentation marked up as a DocBook book (or equivalent). Book length, and
broken up into chapters. Normally available as both one large HTML file (for people with
fast connections, or who want to print it easily from a browser) and as a collection of
linked, smaller files.

Directory: man

Contents: For translations of the system manual pages. This directory will contain one or
more mann directories, corresponding to the sections that have been translated.

Not every lang.encoding directory will contain all of these directories. It depends on
how much translation has been accomplished by that translation team.

6.3. Document specific information
This section contains specific notes about particular documents managed by the FDP.

6.3.1. The Handbook

books/handbook/

The Handbook is written to comply with the FreeBSD DocBook extended DTD.

The Handbook is organized as a DocBook book. It is then divided into parts, each of which
may contain several chapters. chapter s are further subdivided into sections (sect1) and
subsections (sect2, sect3) and so on.

6.3.1.1. Physical organization

There are a number of files and directories within the handbook directory.

##

@ The Handbook's organization may change over time, and this
document may lag in detailing the organizational changes. If you
have any questions about how the Handbook is organized, please
contact the FreeBSD documentation project ####,

84

http://lists.FreeBSD.org/mailman/listinfo/freebsd-doc

6. Structuring documents under doc/

6.3.1.1.1. Makefile

The Makefile defines some variables that affect how the SGML source is converted to
other formats, and lists the various source files that make up the Handbook. It then
includes the standard doc.project.mk file, to bring in the rest of the code that handles
converting documents from one format to another.

6.3.1.1.2. book . xml

This is the top level document in the Handbook. It contains the Handbook's DOCTYPE
declaration, as well as the elements that describe the Handbook's structure.

book.xml uses parameter entities to load in the files with the .ent extension. These files
(described later) then define general entities that are used throughout the rest of the
Handbook.

6.3.1.1.3. directory/chapter.xml

Each chapter in the Handbook is stored in a file called chapter.xml in a separate
directory from the other chapters. Each directory is named after the value of the id
attribute on the chapter element.

For example, if one of the chapter files contains:

<chapter id="kernelconfiguration">
</chapter>

then it will be called chapter.xml in the kernelconfiguration directory. In general,
the entire contents of the chapter will be held in this file.

When the HTML version of the Handbook is produced, this will yield
kernelconfiguration.html . This is because of the id value, and is not related to the
name of the directory.

In earlier versions of the Handbook the files were stored in the same directory as
book.xml , and named after the value of the id attribute on the file's chapter element.
Moving them into separate directories prepares for future plans for the Handbook.
Specifically, it will soon be possible to include images in each chapter. It makes more sense
for each image to be stored in a directory with the text for the chapter than to try to
keep the text for all the chapters, and all the images, in one large directory. Namespace
collisions would be inevitable, and it is easier to work with several directories with a few
files in them than it is to work with one directory that has many files in it.

A brief look will show that there are many directories with individual chapter.xml
files, including basics/chapter.xml , introduction/chapter.xml , and printing/
chapter.xml .

85

The Handbook

##

A Chapters and/or directories should not be named in a fashion that
reflects their ordering within the Handbook. This ordering might
change as the content within the Handbook is reorganized; this sort
of reorganization should not (generally) include the need to rename
files (unless entire chapters are being promoted or demoted within
the hierarchy).

Each chapter.xml file will not be a complete SGML document. In particular, they will not
have their own DOCTYPE lines at the start of the files.

This is unfortunate as it makes it impossible to treat these as generic SGML files and simply
convert them to HTML, RTF, PS, and other formats in the same way the main Handbook is
generated. This would force you to rebuild the Handbook every time you want to see the
effect a change has had on just one chapter.

86

7. The Documentation
Build Process

This chapter's main purpose is to clearly explain how the documentation build process is
organized, and how to affect modifications to this process.

After you have finished reading this chapter you should:

+ Know what you need to build the FDP documentation, in addition to those mentioned
in the SGML tools chapter.

+ Be able to read and understand the make instructions that are present in each
document's Makefile s, as well as an overview of the doc.project.mk includes.

+ Be able to customize the build process by using make variables and make targets.

7.1. The FreeBSD Documentation Build Toolset

Here are your tools. Use them every way you can.
+ The primary build tool you will need is make, but specifically Berkeley Make.

+ Package building is handled by FreeBSD's pkg_create. If you are not using FreeBSD, you
will either have to live without packages, or compile the source yourself.

« gzip is needed to create compressed versions of the document. bzip2 compression and
zip archives are also supported. tar is supported, but package building demands it.

+ install is the default method to install the documentation. There are alternatives,
however.

##
@ It is unlikely you will have any trouble finding these last two, they
are mentioned for completeness only.

7.2. Understanding Makefiles in the
Documentation tree

There are three main types of Makefile s in the FreeBSD Documentation Project tree.

Subdirectory Makefiles

+ Subdirectory Makefile s simply pass commands to those directories below them.

+ Documentation Makefile s describe the document(s) that should be produced from this
directory.

+ Make includes are the glue that perform the document production, and are usually of
the form doc. xxx.mk .

7.2.1. Subdirectory Makefiles

These Makefile s usually take the form of:

SUBDIR =articles
SUBDIR+=books

COMPAT_SYMLINK = en

DOC PREFIX?= ${.CURDIR}/..
.include "${DOC PREFIX}/share/mk/doc.project.mk"

In quick summary, the first four non-empty lines define the make variables, SUBDIR,
COMPAT SYMLINK , and DOC_PREFIX .

The first SUBDIR statement, as well as the COMPAT SYMLINK statement, shows how to
assign a value to a variable, overriding any previous value.

The second SUBDIR statement shows how a value is appended to the current value of a
variable. The SUBDIR variable is now articles books .

The DOC_PREFIX assignment shows how a value is assigned to the variable, but only if it
is not already defined. This is useful if DOC_PREFIX is not where this Makefile thinks it
is - the user can override this and provide the correct value.

Now what does it all mean? SUBDIR mentions which subdirectories below this one the
build process should pass any work on to.

COMPAT SYMLINK is specific to compatibility symlinks (amazingly enough) for languages
to their official encoding (doc/en would point to en US.IS0-8859-1).

DOC_PREFIX is the path to the root of the FreeBSD Document Project tree. This is not
always that easy to find, and is also easily overridden, to allow for flexibility. . CURDIR is
a make builtin variable with the path to the current directory.

The final line includes the FreeBSD Documentation Project's project-wide make system

file doc.project.mk which is the glue which converts these variables into build
instructions.

88

7. The Documentation Build Process

7.2.2. Documentation Makefiles

These Makefiles set a bunch of make variables that describe how to build the
documentation contained in that directory.

Here is an example:
MAINTAINER=nik@FreeBSD.org
DOC?= book
FORMATS?= html-split html

INSTALL_COMPRESSED?= gz
INSTALL ONLY COMPRESSED?=

SGML content
SRCS= book.xml

DOC_PREFIX?= ${.CURDIR}/../../..

.include "$(DOC PREFIX)/share/mk/docproj.docbook.mk"

The MAINTAINER variable is a very important one. This variable provides the ability to
claim ownership over a document in the FreeBSD Documentation Project, whereby you
gain the responsibility for maintaining it.

DOC is the name (sans the .xml extension) of the main document created by this directory.
SRCS lists all the individual files that make up the document. This should also include
important files in which a change should result in a rebuild.

FORMATS indicates the default formats that should be built for this document.
INSTALL COMPRESSED is the default list of compression techniques that should be used in
the document build. INSTALL_ONLY_COMPRESS , empty by default, should be non-empty
if only compressed documents are desired in the build.

##
@ We covered optional variable assignments in the previous section.

The DOC_PREFIX and include statements should be familiar already.

89

FreeBSD Documentation Project make
includes

7.3. FreeBSD Documentation Project make
includes

This is best explained by inspection of the code. Here are the system include files:

« doc.project.mk is the main project include file, which includes all the following
include files, as necessary.

« doc.subdir.mk handles traversing of the document tree during the build and install
processes.

+ doc.install.mk provides variables that affect ownership and installation of
documents.

+ doc.docbook.mk is included if DOCFORMAT is docbook and DOC is set.
7.3.1. doc.project.mk
By inspection:

DOCFORMAT?= docbook
MAINTAINER?= doc@FreeBSD.org

PREFIX?= /usr/local
PRI LANG?= en US.IS08859-1

.1f defined(DOC)

.if ${DOCFORMAT} == "docbook"
.include "doc.docbook.mk"
.endif

.endif

.include "doc.subdir.mk"
.include "doc.install.mk"

7.3.1.1. Variables

DOCFORMAT and MAINTAINER are assigned default values, if these are not set by the
document make file.

PREFIX is the prefix under which the documentation building tools are installed. For
normal package and port installation, this is /usr/local .

PRI_LANG should be set to whatever language and encoding is natural amongst users
these documents are being built for. US English is the default.

90

7. The Documentation Build Process

##

@ PRI_LANG in no way affects what documents can, or even will,
be built. Its main use is creating links to commonly referenced
documents into the FreeBSD documentation install root.

7.3.1.2. Conditionals

The .if defined(DOC) line is an example of a make conditional which, like in other
programs, defines behavior if some condition is true or if it is false. defined is a function
which returns whether the variable given is defined or not.

.if ${DOCFORMAT} == "docbook" , next, tests whether the DOCFORMAT variable is
"docbook" , and in this case, includes doc.docbook.mk .

The two .endifs close the two above conditionals, marking the end of their application.

7.3.2. doc.subdir.mk

This is too long to explain by inspection, you should be able to work it out with the
knowledge gained from the previous chapters, and a little help given here.

7.3.2.1. Variables
+ SUBDIR is a list of subdirectories that the build process should go further down into.

+ ROOT SYMLINKS is the name of directories that should be linked to the document
install root from their actual locations, if the current language is the primary language
(specified by PRI_LANG).

+ COMPAT SYMLINK is described in the Subdirectory Makefile section.
7.3.2.2. Targets and macros

Dependencies are described by target: dependencyl dependency2 ... tuples, where
to build target, you need to build the given dependencies first.

After that descriptive tuple, instructions on how to build the target may be given, if the
conversion process between the target and its dependencies are not previously defined,
or if this particular conversion is not the same as the default conversion method.

A special dependency .USE defines the equivalent of a macro.

_SUBDIRUSE: .USE

91

doc.subdir.mk

.for entry in ${SUBDIR}

@${ECHO} "===> ${DIRPRFX}${entry}"

@(cd ${.CURDIR}/${entry} && \

${MAKE} ${.TARGET:S/realpackage/package/:S/realinstall/install/} o
DIRPRFX=${DIRPRFX}${entry}/)

.endfor

In the above, SUBDIRUSE is now a macro which will execute the given commands when
it is listed as a dependency.

What sets this macro apart from other targets? Basically, it is executed after the
instructions given in the build procedure it is listed as a dependency to, and it does not
adjust .TARGET, which is the variable which contains the name of the target currently
being built.

clean: SUBDIRUSE
rm -f ${CLEANFILES}

In the above, clean will use the SUBDIRUSE macro after it has executed the instruction
rm -f ${CLEANFILES} . In effect, this causes clean to go further and further down the
directory tree, deleting built files as it goes down, not on the way back up.

7.3.2.2.1. Provided targets

+ install and package both go down the directory tree calling the real versions of
themselves in the subdirectories (realinstall and realpackage respectively).

+ clean removes files created by the build process (and goes down the directory tree
too). cleandir does the same, and also removes the object directory, if any.

7.3.2.3. More on conditionals

« exists is another condition function which returns true if the given file exists.
+ empty returns true if the given variable is empty.

* target returns true if the given target does not already exist.

7.3.2.4. Looping constructs in make (.for)

.for provides a way to repeat a set of instructions for each space-separated element in
a variable. It does this by assigning a variable to contain the current element in the list
being examined.

_SUBDIRUSE: .USE

.for entry in ${SUBDIR}

@${ECHO} "===> ${DIRPRFX}${entry}"

@(cd ${.CURDIR}/${entry} && \

${MAKE} ${.TARGET:S/realpackage/package/:S/realinstall/install/} o
DIRPRFX=${DIRPRFX}${entry}/)

92

7. The Documentation Build Process

.endfor

In the above, if SUBDIR is empty, no action is taken; if it has one or more elements, the
instructions between .for and .endfor would repeat for every element, with entry
being replaced with the value of the current element.

93

8. #i# Website

8.1. ####

200MB ########## SGML #####CVS tree# ##1
CVS tree ########## 100MB

##
@ AR HARRHARHARRHAHR ports HA#HHH HARHHBHARAHARHARY

pkg_delete(1) ##is #### pOTtH #H#######H jade-1 14 #E#####H
jade- 1 2HHHHHIBEIRIAANS

#u####### SGML #

pkg_delete jade-1.1

####### CVS repository##### www, doc, ports ### CVS tree(###### CVSROOT)# ###
CVSup ## ###### mirror a CVS tree ### CVS tree#

#HE#H# CVSUD collections ##www, doc-all, cvs-base ## ports-base #
#######E 105MB ###

CVS tree - ## src, doc, www ## ports - #### 940MB#

8.2. Build the web pages from scratch
1. HERARERAR(BERE COMB ##)#H##HRHHH

mkdir /var/tmp/webbuild
cd /var/tmp/webbuild

2. #CVS tree # checkout ### SGML ##
cvs -R co www doc
3. ##www/en ###### make(1) all ######

cd en
make all

http://www.FreeBSD.org/cgi/man.cgi?query=pkg_delete&sektion=1
../../../../doc/zh_TW.Big5/books/handbook/synching.html#CVSUP
http://www.FreeBSD.org/cgi/man.cgi?query=make&sektion=1

HEHAABRRHHHAH

8.3. i H###

1. #H####HH en #ERBHHHHHH#HH#HHH
cd path/www/en

2. ##make(1) install # ## DESTDIR ##########H#H##Y
make DESTDIR=/usr/local/www install

3. HEHAAABRRRARABRRRARARRYE BRRRHAHRRRRHAAR BRI HHARRRRRAARHBRRAA R BIH BRHHHHH
HEHARBRBRHHAHBRY

find /usr/local/www -ctime 3 -print® | xargs -0 rm

8.4. #i###

CVSROOT
CVS tree ###H#HBHHHY

CVSROOT=/home/ncvs; export CVSROOT

ENGLISH_ONLY

make ENGLISH_ONLY=YES all install
#EAAHAAHH ENGLISH ONLY ########AHHARHA#H##H ENGLISH ONLY #########Y

make ENGLISH_ONLY="" all install clean

WEB ONLY
#rpppprnnest makefiles #### www ####as# HTIML ### ### doc #HARBHEARREH
(Handbook, FAQ, Tutorials)# ###

make WEB_ONLY=YES all install

NOPORTSCVS
##nnnnsttmakefiles #### ports cvs repository ##### ###### [usr/ports (##
PORTSBASE #####) ######

CVSROOT ###### #nsnnnnns dot files (## ~/.profile) # #######s

WEB ONLY #ENGLISH ONLY # NOPORTSCVS ## makefile ### #### /etc/
make.conf #Makefile.inc ################1##4E dot files #########

96

http://www.FreeBSD.org/cgi/man.cgi?query=make&sektion=1

9. #H#HHHH###

FreeBSD ##(###F AQ, Handbook, tutorials, manual pages#)#####(FAQ)#

FreeBSD #########E FAQ #H##H#HE HHAHHHH Frank Griinder
<elwood@nc5sys.in-berlin.de > ### Bernd Warken <bwarken@mayn.de > ########

The FAQ is maintained by the Documentation Engineering Team
<doceng@FreeBSD.org >.

FAQ ####7

##n#nnns# freebsd-doc #######n## FreeBSD ##HARHAHIHHH #RHHHH TAQ #HHHHRHH#H
HHHAHBBRHH

118n #110n

i18n # internationalization ##### 110n ## localization ###########H#####HH#H#
1181 ##t## “17 ### 18 #ut##### 0 # ## | 10N ##tss# 17 ### 10 #as##is 00 #

apppppssss# mailing list

wppppprrnspsperss mailing lists#s# #aasss sessssssssst mailing lists ##aass

B R

I
HRHHRRHHRR AR IAAS

HARRHHBHARY

B e el A A A A A e e A A A A A
HHHHHHHH R R A F TR H

#HhH#RRH A (Spanish) # FAQ #######(Hungarian)#
#E RRBHARARRR

w##pAEEEEEEEE FreeBSD CVS repository ###(######)#### CTM # CVSup
##Handbook ## "##### FreeBSD" ######H##H#HHIY

####H##E CVS ##H #HHARHHHHHARIHHHH AR

[XXX To Do(#########) - ######(Cutorial)#a#sss CNSUD #ARHHRHRBHABHRIHRIHIH]
#E BRBBARRRBRARRRRR RS

HAH##BR BRARHHHBRRRHHS HHBRRRHARHBRRRAHHBRRRRHHHRRHHHHHRE BRARHHHBRBHHH S
HHHHAHH

mailto:elwood@mc5sys.in-berlin.de
mailto:bwarken@mayn.de
mailto:doceng@FreeBSD.org
http://www.freebsd.org/docproj/translations.html
http://www.FreeBSD.org/docproj/translations.html

##

##

##

##

##

##

98

BHBBHBHRRBRBRRRRB R R BB ##8## FreeBSD documentation project ####
##

HHHARHBRAHAH AR BRHAHH

#Ht##a#E “TreeBSD #HHE #HHHHH #HAHHHRHHHY

Lt e el A A A el A A A e e e A A A A A A B A A
HHHHHH R F R FFHFF AT B AR AR AR R AR AR H AR

FreeBSD documentation project #### ######HHH#HRHHHRHHHHIRIHRRIRY

HEHHBHRAERES TreeBSD # Mirror(##) ###H#HHEREHHHHHE HRHRBHRHRRR AR RS
#usannns email ### mailing list ###

HERHARHARAHARHARAHARHARAHARHARAA AR —— #H FAQ #HHARHHAAHHARAHAY
HARHHHBHAR AR

HARHRRRE FHARRRRRRRRH (RRRRRER) B R

HHHHHHHHEEEE HHH e H 4 HHHHHHHH S
HARBRRHHAH BB RAAAHBRRRHAABRRRHAH FreeBSD ##) ###HHHAARBHHHH###HE FreeBSD ###

bidcdd g did g d g g g gt it gt e

##

HHHAARBRAHAH AR RRHAH AR RRHAH

it gt g b oo el g gt gt b gt b

###FreeBSD #########E dOC/ #H#H HEHHHHEIEAEE 150639 ##(/usr/
share/misc/is0639 ### FreeBSD ### 1999/01/20 ##)#

BHEBBHBBEBREL B (RBLEY) BULLRBLE BB LR B LR BB LR BB BB
HHHHE Ghdididididid it gt d i il

B
#annanan(Swedish) #

doc/
sv_SE.IS08859-1/
Makefile
books/
faq/
Makefile
book.xml

sv_SE.IS08859-1 ### ##(lang) .##(encoding) HARHRABHAH AHRRRHAAY
Makefiles #########H##

http://lists.FreeBSD.org/mailman/listinfo/freebsd-doc
http://lists.FreeBSD.org/mailman/listinfo/freebsd-doc

#O., #EHARHHH

##

##

##

##

tar(1) # gzip(1) #####RIRBHAHHHHARRARS

% cd doc
% tar cf swedish-docs.tar sv_SE.IS08859-1
% gzip -9 swedish-docs.tar

HH#H swedish-docs.tar.gz BERBHHRHHAAAAHHAAHAH (ISP #AH) HARBHARH
Documentation Engineering Team <doceng@FreeBSD.org > ##

HARHAH send—pr(l) HRAHAHABHBHRHABRRRS BHBHRIHBRBHR IR IR RIS BHBHRIHY
HARHHHRHAH

#pa#(#anpat##### Documentation Engineering Team <doceng@FreeBSD.org >
HH) HERBRBRARARRRAAARRRRARARRRAAARRRARA

1. ##uasns# RCS tag (## "ID" ###)#
2. sv_SE.IS08859-1 ###### make all ####

3. make installl ########

HHHARRBRARAHRABRRHHAAABRRHHAAARRRHHH
HARHHARAHABHHARAARHAA cOMMIt #H#H
HAHHHBRAHAH AR RRHHH AR RIS
HARHHARHAHS

#uunnnannnsst Handbook #####is #innnsssnsnsns# Handbook #####

HERBHAHAABRRRRRRRRRIRRAAR A (RRHAHRRRRRRY) BRRHHA AR RRRRR#### FreeBSD

HERHHE BHBHHHHRH FreeBSD ###H#HAHHBHAHARARRHS

############(# send-pr(l))###### Handbook ##### ##########H#IHHHHH#IH
Handbook ##

HHHHHY
HERBRRHRRRRIHRBREHIRH

#ran#r# ASCII(Non-ASCII) ####### SGML entities ######
#H#HHEREER & ##(&)#H#HE entity #####H#H()#

entity #### 1SO8879 ###### port tree ### textproc/iso8879#

REHBHHH
Entity##: é
#H##: &

99

http://www.FreeBSD.org/cgi/man.cgi?query=tar&sektion=1
http://www.FreeBSD.org/cgi/man.cgi?query=gzip&sektion=1
mailto:doceng@FreeBSD.org
http://www.FreeBSD.org/cgi/man.cgi?query=send-pr&sektion=1
mailto:doceng@FreeBSD.org
http://www.FreeBSD.org/cgi/man.cgi?query=send-pr&sektion=1
http://www.freebsd.org/cgi/url.cgi?ports/textproc/iso8879/pkg-descr

##: # e #anns##(acute accent)
Entity##: É

£

“EV#######(acute accent)
Entity##: ü

#H## {

W aRpREEEREAEA# (Umlaut)

1508879 ## port ####### /usr/local/share/xml/1s08879
HAHAHBRY

HHH#AHBRAHAHHS “you" HHRHRRRBRBRRY [ERERHH

U YU LGB H L LGB YL L LB RS E LG LY H YL L LYY BB Y HY R LR E YRGS
HHHHHHH R R R F R A AR AR F R R RS HHEH AR HH

Lt e A A A A A A A A
HHHHHHHFHF A

HH#H

4 L A A A A A
HHHHHHFHHF T FH T H

<!--
The FreeBSD Documentation Project

$FreeBSD: doc/en US.IS08859-1/books/fdp-primer/translations/
chapter.xml,v 1.5 2000/07/07 18:38:38 dannyboy Exp $

-->

###HH AR A AR AR SFreeBSDS ##### The FreeBSD Documentation Project
####SEreeBSD ######## CVS ##RH#HARHRH#H HHHAHARH#HAHH (###### $FreeBSD
$ #HH)#

#E#ARAARA#HE $FreeBSDS ###### FreeBSD Documentation Project #### The
FreeBSD ### Documentation Project #

HHARHBRRRAA AR RRHA AR RRRAA AR RRRHA R BRIHH AR

#H#ap#an#(Spanish) #############

<!--
The FreeBSD Spanish Documentation Project

$FreeBSD: doc/es ES.IS08859-1/books/fdp-primer/translations/
chapter.xml,v 1.3 1999/06/24 19:12:32 jesusr Exp $

Original revision: 1.11
-->

100

10.

FreeBSD #########AHAHAHARARARARR B #ARBHB BB BH BB HHHHHHHHHHHH

#AHR#HH
HHHBHHBHH R RAH R BRI R ##8 #1818 “color” ### “colour’# ###
“rationalize”### “rationalise” #######

##

St b A A A A A e e # BB BHSRR LR B LSS
HHHHHHHHHFH R R FHHHHH

#AR#H
#####(contraction)# #i#####RAAA# #1H “Don't use contractions” ############H

HHHHHHHHFHFF AR ART A AR AR AT

serial comma
#########(,)################# HH SRS Cand” # #RE SRR

RAHAARHH RS

This is a list of one, two and three items.
#HsppaaEaEE(Cone” # two” # three”)###########(“one”# “two and three”)##
#H##BBHRY serial comma #EBBRBRBBBRES

This is a list of one, two, and three items.

wappnnppnaany() annnn(B) #es Cand” #HAHHEEBRRRRRIRE

HH#HHH?
#rpppna##(redundant phrase)# HHH CHARET R # an #E BRER BB R R

###(command) s #HRH RS
#H# CUSUD #AARBBHAH

cvsup ######E

###(filename) #A####HHHHHHHHHEI

.. ### fetc/rc.local ##...

Style guide

.. #/etc/rc.local #...

man(manual) ###############(### SGML citerefentry ##)#
##man csh ####HARARY

csh(1)#

SR bbbttt
Emacs ########ABH#HH AR B HHRARHHHHRH

#####()######### RERBRARBRRAARRRRHAARE BHARRRAAARRRH#H ## “Jordan K. Hubbard”

###nansnsaas# William Strunk ### Elements of Style#

10.1. Style guide

Handbook ##########HEBHAHBHBHIRYE FHEBHHHRRY
10.1.1. ###

Tag #######R###HE## <para> ##% <PARA> #

SGML ############A## < ENTITY..> # <!DOCTYPE..> # ### <lentity.> #<!doctype.>

10.1.2. ###
###(acronym)u AR ###"Network Tlme Protocol (NTP)"# HRBHBRAAS
RAAHARHHHRARH

HERHHABRRARARRRAAAH <aCTONY N> #HH #AFHRARS rOLe #ARRRHR HRAAHHHRARHRARARHHAR A
HH## BRHAAHBRE

10.1.3. ##

panpnnnny ppppppssst(indentation) ### 0

BHEBHBBRRBRARRRRRY FHRBRRRRRRRRARRRR R S #HHHHH tab ###H #HEH Cab #EBHHBHRHHHHRY

HEHAHHAY #H Cag #AAHHAAHRARIARAR AR ARHA A

HAAARBRARAH AR RRHRAAAHS
+--- ## 0 ##

\
<chapter>

102

http://www.FreeBSD.org/cgi/man.cgi?query=csh&sektion=1
http://www.bartleby.com/141/

10, ##AHARH

Emacs # XEmacs ############# sqQML-mode ### #EAHHHHRAAHIARIHHARAY

Vim #####HAHHHRARAH

10.1.4. Tag ##
10.1.4.1. Tag ##

HHABHHARAARHHARAARHHFRAARHHA RS HHY

103

HHA#AH

</sectl>

<sectl>
<title>...</title>

<para>...</para>
</sectl>
</article>

10.1.4.2. #i#t###

itemizedlist #####A##HHARHHARHHHRAHBHAHRAHRHHHRHA HHARAHBHHHRH

BHEEY # Bt Bt Bt bt Bl A bl Al A Bt bl At Al A A A
para # term ########HHAH#H#E BAAHHHRRAAAH AR GLS #HBHAAH AR

HAHHHBRAHHHHBRAHAH AR RHH

Ll A A A A A el A A A A A el A A A A b
HHHHHHHHHHFHFFFFFHFFHT HHAFF R RFFRFRRHT BHHFHRRT AR HH

HHHHHHH R F T

10.1.5. ####4#

#commit ####

BRBHBHHS U H LYl HA et 1t dhth Attt Fdf A H A A B A H A A A H A
Handbook ########ABHH#HARB## HARHHARRBHARABHHHARHHARRRHHHH

HHHHHHHRHRARRHAAAAAAAA AR 80 #HAHARE cOMMMIt ### HHHBHHHRIHIHHHHH
commit ## ##### commit #####HHH##H#H# whitespace—only (##) HUARHARHHB AR B AR AR HH
#commit # #

10.1.6. Nonbreaking space

HHARHBRARHAHRARRRRAAARRRRAAAHBRIAAS BHAABRRRHAAHRRHRAA AR #HRRHAA##HHH HTML ###
HHAAHBRARAHAHRRHAH

Data capacity ranges from 40 MB to 15
GB. Hardware compression ..

SNDSp; #AR#HRHHARY #H###### nonbreaking spaces#
o HHAAHBHHHH

57600 bps
o HEBHHHHHHBYR

FreeBSD 4.7

104

#10. ####HHH

+ multiword ## (######### “The FreeBSD Brazilian Portuguese Documentation Project”
HARBHHRHIAIAS SRR #

Sun Microsystems

10.2. ###

FreeBSD #########H#HHHAIE #H#H#R##H#A#E O'Reilly word list#
e 22X

* 4.X-STABLE

¢ CD-ROM

* DoS (Denial of Service)
+ Ports Collection

+ IPsec

* Internet

* MHz

+ Soft Updates

+ Unix

» disk label

+ email

« file system

+ manual page

¢ mail server

* name server

+ null-modem

+ web server

105

http://www.oreilly.com/oreilly/author/stylesheet.html

11. Using ... with Emacs

Recent versions of Emacs or XEmacs (available from the ports collection) contain a very
useful package called PSGML. Automatically invoked when a file with the .xml extension
is loaded, or by typing M-x sgml-mode , it is a major mode for dealing with SGML files,
elements and attributes.

An understanding of some of the commands provided by this mode can make working
with SGML documents such as the Handbook much easier.

C-c C-e
Runs sgml-insert-element . You will be prompted for the name of the element
to insert at the current point. You can use the TAB key to complete the element.
Elements that are not valid at the current point will be disallowed.

The start and end tags for the element will be inserted. If the element contains other,
mandatory, elements then these will be inserted as well.

C-c =
Runs sgml-change-element-name . Place the point within an element and run this
command. You will be prompted for the name of the element to change to. Both the
start and end tags of the current element will be changed to the new element.

C-c C-r
Runs sgml-tag-region .Select some text (move to start of text, C-space, move to end
of text, C-space) and then run this command. You will be prompted for the element
to use. This element will then be inserted immediately before and after your marked
region.

C-c -
Runs sgml-untag-element .Place the point within the start or end tag of an element
you want to remove, and run this command. The element's start and end tags will
be removed.

C-c C-q
Runs sgml-fill-element . Will recursively fill (i.e., reformat) content from the
current element in. The filling will affect content in which whitespace is significant,
such as within programlisting elements, so run this command with care.

C-c C-a
Runs sgml-edit-attributes . Opens a second buffer containing a list of all the
attributes for the closest enclosing element, and their current values. Use TAB to
navigate between attributes, C-k to remove an existing value and replace it with a
new one, C-c C-c to close this buffer and return to the main document.

C-c C-v
Runs sgml-validate . Prompts you to save the current document (if necessary) and
then runs an SGML validator. The output from the validator is captured into a new

buffer, and you can then navigate from one troublespot to the next, fixing markup
errors as you go.

C-c/
Runs sgml-insert-end-tag .Inserts the end tag for the current open element.

Doubtless there are other useful functions of this mode, but those are the ones I use most
often.

You can also use the following entries in .emacs to set proper spacing, indentation, and
column width for working with the Documentation Project.

108

12.

This document is deliberately not an exhaustive discussion of SGML, the DTDs listed,
and the FreeBSD Documentation Project. For more information about these, you are
encouraged to see the following web sites.

12.1. The FreeBSD Documentation Project

¢ The FreeBSD Documentation Project web pages

+ The FreeBSD Handbook

12.2. SGML

+ The SGML/XML web page, a comprehensive SGML resource

+ Gentle introduction to SGML

12.3. HTML

+ The World Wide Web Consortium

+ The HTML 4.0 specification

12.4. DocBook

« The DocBook Technical Committee, maintainers of the DocBook DTD
+ DocBook: The Definitive Guide, the online documentation for the DocBook DTD.

+ The DocBook Open Repository contains DSSSL stylesheets and other resources for
people using DocBook.

12.5. The Linux Documentation Project

¢ The Linux Documentation Project web pages

../../../../docproj/index.html
../../../../doc/zh_TW.Big5/books/handbook/index.html
http://www.oasis-open.org/cover/
http://etext.virginia.edu/bin/tei-tocs?div=DIV1&id=SG
http://www.w3.org/
http://www.w3.org/TR/REC-html40/
http://www.oasis-open.org/docbook/
http://www.docbook.org/
http://docbook.sourceforge.net/
http://www.linuxdoc.org/

A.

####H##E SGML #HBHHRHHARHARHHARY BHHHRHARHHHRAARHHARAARHHHRHA RIS

RUHAAABRHHH —— HEHHAHARBH Y ##########(##################) ###### DocBook #####
#riaA#aa# CSup#CVSup #### doc tree ############### SGML ##t# #H######## http://
www.FreeBSD.org/cgi/cvsweb.cgi/doc/ #

#HARRRRRRRRR A DocBook 4.1 DTD ## FreeBSD ### DTD# ##### Norm Walsh #####
(stylesheets)### FreeBSD ############## #1#### DOCBOOK #HA#MHHHHIHHIHHIHIHHIBHIRY

A.1. DocBook ook

A.1. DocBook book

http://www.FreeBSD.org/cgi/cvsweb.cgi/doc/
http://www.FreeBSD.org/cgi/cvsweb.cgi/doc/

#H# A, ##

A.2. DocBooOK articte

A.2. DocBook article

112

#H AN, ##

<para>######## (sub-section) </para>
</sect2>
</sectl>
</article>

A.3. Producing formatted output

HARH#HBHARARHAH textproc/dOCpI‘OJ HUHARH AR HHBHHHAH port HARBHARARHH HHRBHARARHHHAE [
usr/local/ ###### #H##BHAHAHA#BRAHAH#E PATH #AHAH#BREH HHERHHHHHBRARAHH BB HAHHH

A.3.1. #i# Jade

A.3. ## DocBook # HTML (####)

% jade -V nochunks \ @
-c /usr/local/share/xml/docbook/dsssl/modular/catalog \ (2]
-c /usr/local/share/xml/docbook/catalog \
-c /usr/local/share/xml/jade/catalog \
-d /usr/local/share/xml/docbook/dsss1/modular/html/docbook.s
dsl \©
-t sgnl © file.xml > file.html ©

@ Specifies the nochunks parameter to the stylesheets, forcing all output to
be written to STDOUT (using Norm Walsh's stylesheets).

@ Specifies the catalogs that Jade will need to process. Three catalogs are
required. The first is a catalog that contains information about the DSSSL
stylesheets. The second contains information about the DocBook DTD. The
third contains information specific to Jade.

€ Specifies the full path to the DSSSL stylesheet that Jade will use when
processing the document.

© Instructs Jade to perform a transformation from one DTD to another. In this
case, the input is being transformed from the DocBook DTD to the HTML
DTD.

© Specifies the file that Jade should process, and redirects output to the
specified . html file.

A4, ## DocBook # HTML (####)

% jade \

113

http://www.freebsd.org/cgi/url.cgi?ports/textproc/docproj/pkg-descr

#H AN, ##

© Specifies the catalogs that Jade will need to process. Three catalogs are

® Specifies the full path to the DSSSL stylesheet that Jade will use when

© Instructs Jade to perform a transformation from one DTD to another. In this

-c /usr/local/share/xml/docbook/dsssl/modular/catalog \ (1]
-c /usr/local/share/xml/docbook/catalog \

-c /usr/local/share/xml/jade/catalog \

-d /usr/local/share/xml/docbook/dsssl/modular/html/docbook.s

dsl \&
-t sgml © file.xml ©

required. The first is a catalog that contains information about the DSSSL
stylesheets. The second contains information about the DocBook DTD. The
third contains information specific to Jade.

processing the document.

case, the input is being transformed from the DocBook DTD to the HTML
DTD.

© Specifies the file that Jade should process. The stylesheets determine how
the individual HTML files will be named, and the name of the “root” file (i.e.,
the one that contains the start of the document.

This example may still only generate one HTML file, depending on the structure of
the document you are processing, and the stylesheet's rules for splitting output.

114

A.5. ## DocBook # Postscript(PS)

The source SGML file must be converted to a TeX file.

% jade -Vtex-backend \ @
-c /usr/local/share/xml/docbook/dsssl/modular/catalog \ (2]
-c /usr/local/share/xml/docbook/catalog \
-c /usr/local/share/xml/jade/catalog \
-d /usr/local/share/xml/docbook/dsssl/modular/print/
docbook.dsl \ &
-t tex © file.xml

© Customizes the stylesheets to use various options specific to producing
output for TeX.

© Specifies the catalogs that Jade will need to process. Three catalogs are
required. The first is a catalog that contains information about the DSSSL
stylesheets. The second contains information about the DocBook DTD. The
third contains information specific to Jade.

© Specifies the full path to the DSSSL stylesheet that Jade will use when
processing the document.

©Q Instructs Jade to convert the output to TeX.

#H AN, ##

The generated . tex file must now be run through tex, specifying the &jadetex
macro package.

% tex "&jadetex" file.tex

You have to run tex at least three times. The first run processes the document,
and determines areas of the document which are referenced from other parts of
the document, for use in indexing, and so on.

Do not be alarmed if you see warning messages such as LaTeX Warning:
Reference “136' on page 5 undefined on input line 728. at this point.

The second run reprocesses the document now that certain pieces of information
are known (such as the document's page length). This allows index entries and
other cross-references to be fixed up.

The third pass performs any final cleanup necessary.
The output from this stage will be file.dvi.

Finally, run dvips to convert the .dvi file to Postscript.

% dvips -o file.ps file.dvi

A.6. ## DocBook # PDF

The first part of this process is identical to that when converting DocBook
to Postscript, using the same jade command line (## A.5, “## DocBook #
Postscript(PS) ##”).

When the .tex file has been generated you run pdfTeX. However, use the
&pdfjadetex macro package instead.

% pdftex "&pdfjadetex" file.tex
Again, run this command three times.

This will generate file.pdf , which does not need to be processed any further.

115

#i#

F

Formal Public Identifier, 17, 18

M

Membership, 1

	FreeBSD 文件計畫入門書
	內容目錄
	序言
	1. Shell 提示符號(Prompts)
	2. 書中所用的編排風格
	3. 『Note、Tip、Important、Warning、Example』的運用
	4. 感謝

	章 1. 概論
	1.1. FreeBSD 文件的組成部分
	1.2. 在開工之前...
	1.3. 快速上手篇

	章 2. 工具
	2.1. 必備工具
	2.1.1. 軟體
	2.1.2. DTD 及 Entity
	2.1.3. 樣式表(Stylesheets)

	2.2. 輔助工具
	2.2.1. 軟體

	章 3. SGML Primer
	3.1. 簡介
	3.2. Elements, tags, and attributes
	3.2.1. For you to do…

	3.3. The DOCTYPE declaration
	3.3.1. Formal Public Identifiers (FPIs)
	3.3.1.1. catalog files
	3.3.1.2. SGML_CATALOG_FILES

	3.3.2. Alternatives to FPIs

	3.4. Escaping back to SGML
	3.5. 註解
	3.5.1. For you to do…

	3.6. Entities
	3.6.1. General Entities
	3.6.2. Parameter entities
	3.6.3. For you to do…

	3.7. Using entities to include files
	3.7.1. Using general entities to include files
	3.7.2. Using parameter entities to include files
	3.7.3. For you to do…
	3.7.3.1. Use general entities to include files
	3.7.3.2. Use parameter entities to include files

	3.8. Marked sections
	3.8.1. Marked section keywords
	3.8.1.1. CDATA, RCDATA
	3.8.1.2. INCLUDE and IGNORE

	3.8.2. For you to do…

	3.9. Conclusion

	章 4. SGML Markup
	4.1. HTML
	4.1.1. Formal Public Identifier (FPI)
	4.1.2. Sectional elements
	4.1.3. Block elements
	4.1.3.1. Headings
	4.1.3.2. Paragraphs
	4.1.3.3. Block quotations
	4.1.3.4. Lists
	4.1.3.5. Pre-formatted text
	4.1.3.6. Tables

	4.1.4. In-line elements
	4.1.4.1. Emphasizing information
	4.1.4.2. Bold and italics
	4.1.4.3. Indicating fixed pitch text
	4.1.4.4. Content size

	4.1.5. Links
	4.1.5.1. Linking to other documents on the WWW
	4.1.5.2. Linking to other parts of documents

	4.2. DocBook
	4.2.1. FreeBSD extensions
	4.2.2. Formal Public Identifier (FPI)
	4.2.3. Document structure
	4.2.3.1. Starting a book
	4.2.3.2. Starting an article
	4.2.3.3. Indicating chapters
	4.2.3.4. Sections below chapters
	4.2.3.5. Subdividing using parts

	4.2.4. Block elements
	4.2.4.1. Paragraphs
	4.2.4.2. Block quotations
	4.2.4.3. Tips, notes, warnings, cautions, important information and sidebars.
	4.2.4.4. Lists and procedures
	4.2.4.5. Showing file samples
	4.2.4.6. Callouts
	4.2.4.7. Tables
	4.2.4.8. Examples for the user to follow

	4.2.5. In-line elements
	4.2.5.1. Emphasizing information
	4.2.5.2. Quotations
	4.2.5.3. Keys, mouse buttons, and combinations
	4.2.5.4. Applications, commands, options, and cites
	4.2.5.5. Files, directories, extensions
	4.2.5.6. The name of ports
	4.2.5.7. Devices
	4.2.5.8. Hosts, domains, IP addresses, and so forth
	4.2.5.9. Usernames
	4.2.5.10. Describing Makefiles
	4.2.5.11. Literal text
	4.2.5.12. Showing items that the user must fill in
	4.2.5.13. Quoting system errors

	4.2.6. Images
	4.2.6.1. Image formats
	4.2.6.2. Markup
	4.2.6.3. Makefile entries
	4.2.6.4. Images and chapters in subdirectories

	4.2.7. Links
	4.2.7.1. Linking to other parts of the same document
	4.2.7.2. Linking to documents on the WWW

	章 5. * Stylesheets
	5.1. * DSSSL
	5.2. CSS
	5.2.1. The Web site (HTML documents)
	5.2.2. The DocBook documents

	章 6. Structuring documents under doc/
	6.1. The top level, doc/
	6.2. The lang.encoding/ directories
	6.3. Document specific information
	6.3.1. The Handbook
	6.3.1.1. Physical organization
	6.3.1.1.1. Makefile
	6.3.1.1.2. book.xml
	6.3.1.1.3. directory/chapter.xml

	章 7. The Documentation Build Process
	7.1. The FreeBSD Documentation Build Toolset
	7.2. Understanding Makefiles in the Documentation tree
	7.2.1. Subdirectory Makefiles
	7.2.2. Documentation Makefiles

	7.3. FreeBSD Documentation Project make includes
	7.3.1. doc.project.mk
	7.3.1.1. Variables
	7.3.1.2. Conditionals

	7.3.2. doc.subdir.mk
	7.3.2.1. Variables
	7.3.2.2. Targets and macros
	7.3.2.2.1. Provided targets

	7.3.2.3. More on conditionals
	7.3.2.4. Looping constructs in make (.for)

	章 8. 建構 Website
	8.1. 事前準備
	8.2. Build the web pages from scratch
	8.3. 在你的網頁伺服器上安裝網頁
	8.4. 環境變數

	章 9. 翻譯時的常見問題
	章 10. 文件的撰寫風格
	10.1. Style guide
	10.1.1. 大小寫
	10.1.2. 縮寫字
	10.1.3. 縮排
	10.1.4. Tag 風格
	10.1.4.1. Tag 空行
	10.1.4.2. 標籤的分行

	10.1.5. 空白的更改
	10.1.6. Nonbreaking space

	10.2. 詞彙表

	章 11. Using sgml-mode with Emacs
	章 12. 他山之石
	12.1. The FreeBSD Documentation Project
	12.2. SGML
	12.3. HTML
	12.4. DocBook
	12.5. The Linux Documentation Project

	附錄 A. 範例
	A.1. DocBook book
	A.2. DocBook article
	A.3. Producing formatted output
	A.3.1. 使用 Jade

	索引

