/*====================================================================== A Flash Translation Layer memory card driver This driver implements a disk-like block device driver with an apparent block size of 512 bytes for flash memory cards. ftl_cs.c 1.50 1999/07/30 03:49:13 The contents of this file are subject to the Mozilla Public License Version 1.1 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.mozilla.org/MPL/ Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License for the specific language governing rights and limitations under the License. The initial developer of the original code is David A. Hinds . Portions created by David A. Hinds are Copyright (C) 1998 David A. Hinds. All Rights Reserved. LEGAL NOTE: The FTL format is patented by M-Systems. They have granted a license for its use with PCMCIA devices: "M-Systems grants a royalty-free, non-exclusive license under any presently existing M-Systems intellectual property rights necessary for the design and development of FTL-compatible drivers, file systems and utilities using the data formats with PCMCIA PC Cards as described in the PCMCIA Flash Translation Layer (FTL) Specification." Use of the FTL format for non-PCMCIA applications may be an infringement of these patents. For additional information, contact M-Systems (http://www.m-sys.com) directly. ======================================================================*/ #include #include /* #define PSYCHO_DEBUG */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if (LINUX_VERSION_CODE >= VERSION(2,1,0)) #include #endif #if (LINUX_VERSION_CODE >= VERSION(2,3,3)) #include #endif #include #include #include #include #include #include #include /*====================================================================*/ /* Parameters that can be set with 'insmod' */ /* Major device # for FTL device */ static int major_dev = 0; static int shuffle_freq = 50; MODULE_PARM(major_dev, "i"); MODULE_PARM(shuffle_freq, "i"); /*====================================================================*/ /* Funky stuff for setting up a block device */ #define MAJOR_NR major_dev #define DEVICE_NAME "ftl" #define DEVICE_REQUEST do_ftl_request #define DEVICE_ON(device) #define DEVICE_OFF(device) #define DEVICE_NR(minor) ((minor)>>5) #define REGION_NR(minor) (((minor)>>3)&3) #define PART_NR(minor) ((minor)&7) #define MINOR_NR(dev,reg,part) (((dev)<<5)+((reg)<<3)+(part)) #include #ifdef PCMCIA_DEBUG static int pc_debug = PCMCIA_DEBUG; MODULE_PARM(pc_debug, "i"); #define DEBUG(n, args...) if (pc_debug>(n)) printk(KERN_DEBUG args) static char *version = "ftl_cs.c 1.50 1999/07/30 03:49:13 (David Hinds)"; #else #define DEBUG(n, args...) #endif /*====================================================================*/ /* Maximum number of separate memory devices we'll allow */ #define MAX_DEV 4 /* Maximum number of regions per device */ #define MAX_REGION 4 /* Maximum number of partitions in an FTL region */ #define PART_BITS 3 #define MAX_PART 8 /* Maximum number of outstanding erase requests per socket */ #define MAX_ERASE 8 /* Sector size -- shouldn't need to change */ #define SECTOR_SIZE 512 static void ftl_config(dev_link_t *link); static void ftl_release(u_long arg); static int ftl_event(event_t event, int priority, event_callback_args_t *args); static dev_link_t *ftl_attach(void); static void ftl_detach(dev_link_t *); /* Block IO request handler stuff */ static void do_ftl_request(void); /* Each memory region corresponds to a minor device */ typedef struct partition_t { dev_node_t dev; u_int state; u_int *VirtualBlockMap; u_int *VirtualPageMap; u_int FreeTotal; struct eun_info_t { u_int Offset; u_int EraseCount; u_int Free; u_int Deleted; } *EUNInfo; struct xfer_info_t { u_int Offset; u_int EraseCount; u_short state; } *XferInfo; u_short bam_index; u_int *bam_cache; u_short DataUnits; u_int BlocksPerUnit; erase_unit_header_t header; region_info_t region; memory_handle_t handle; int open; int locked; } partition_t; /* Partition state flags */ #define FTL_FORMATTED 0x01 /* Transfer unit states */ #define XFER_UNKNOWN 0x00 #define XFER_ERASING 0x01 #define XFER_ERASED 0x02 #define XFER_PREPARED 0x03 #define XFER_FAILED 0x04 typedef struct ftl_dev_t { eraseq_handle_t eraseq_handle; eraseq_entry_t eraseq[MAX_ERASE]; wait_queue_head_t erase_pending; partition_t minor[CISTPL_MAX_DEVICES]; } ftl_dev_t; static dev_info_t dev_info = "ftl_cs"; static dev_link_t *dev_table[MAX_DEV] = { NULL, /* ... */ }; static struct hd_struct ftl_hd[MINOR_NR(MAX_DEV, 0, 0)]; static int ftl_sizes[MINOR_NR(MAX_DEV, 0, 0)]; static int ftl_blocksizes[MINOR_NR(MAX_DEV, 0, 0)]; static wait_queue_head_t ftl_wait_open; static struct gendisk ftl_gendisk = { 0, /* Major device number */ "ftl", PART_BITS, /* Bits in partition # */ MAX_PART, /* Partitions per device */ MAX_DEV*MAX_PART, /* maximum number of devices */ NULL, /* init function */ ftl_hd, /* hd_struct */ ftl_sizes, /* block sizes */ MAX_DEV*MAX_PART, /* number of "real" devices */ NULL, NULL }; /*====================================================================*/ static int ftl_ioctl(struct inode *inode, struct file *file, u_int cmd, u_long arg); static int ftl_open(struct inode *inode, struct file *file); static FS_RELEASE_T ftl_close(struct inode *inode, struct file *file); static int ftl_reread_partitions(int minor); static struct file_operations ftl_blk_fops = { NULL, /* lseek */ block_read, /* read */ block_write, /* write */ NULL, /* readdir */ NULL, /* select */ ftl_ioctl, /* ioctl */ NULL, /* mmap */ ftl_open, /* open */ NULL_FLUSH /* flush */ ftl_close, /* release */ block_fsync /* fsync */ }; /*====================================================================*/ static void cs_error(int func, int ret) { int i; error_info_t err = { func, ret }; for (i = 0; i < MAX_DEV; i++) if (dev_table[i] != NULL) break; CardServices(ReportError, dev_table[i]->handle, &err); } /*====================================================================== ftl_attach() creates an "instance" of the driver, allocating local data structures for one device. The device is registered with Card Services. ======================================================================*/ static dev_link_t *ftl_attach(void) { client_reg_t client_reg; dev_link_t *link; ftl_dev_t *dev; eraseq_hdr_t eraseq_hdr; int i, ret; DEBUG(0, "ftl_cs: ftl_attach()\n"); for (i = 0; i < MAX_DEV; i++) if (dev_table[i] == NULL) break; if (i == MAX_DEV) { printk(KERN_NOTICE "ftl_cs: no devices available\n"); return NULL; } /* Create new memory card device */ link = kmalloc(sizeof(struct dev_link_t), GFP_KERNEL); dev_table[i] = link; memset(link, 0, sizeof(struct dev_link_t)); link->release.function = &ftl_release; link->release.data = (u_long)link; dev = kmalloc(sizeof(struct ftl_dev_t), GFP_KERNEL); memset(dev, 0, sizeof(ftl_dev_t)); init_waitqueue_head(&dev->erase_pending); link->priv = dev; /* Register with Card Services */ client_reg.dev_info = &dev_info; client_reg.Attributes = INFO_IO_CLIENT | INFO_CARD_SHARE; client_reg.EventMask = CS_EVENT_RESET_PHYSICAL | CS_EVENT_CARD_RESET | CS_EVENT_CARD_INSERTION | CS_EVENT_CARD_REMOVAL | CS_EVENT_PM_SUSPEND | CS_EVENT_PM_RESUME; client_reg.event_handler = &ftl_event; client_reg.Version = 0x0210; client_reg.event_callback_args.client_data = link; ret = CardServices(RegisterClient, &link->handle, &client_reg); if (ret != CS_SUCCESS) { cs_error(RegisterClient, ret); ftl_detach(link); return NULL; } for (i = 0; i < MAX_ERASE; i++) dev->eraseq[i].State = ERASE_IDLE; eraseq_hdr.QueueEntryCnt = MAX_ERASE; eraseq_hdr.QueueEntryArray = dev->eraseq; dev->eraseq_handle = (void *)link->handle; ret = CardServices(RegisterEraseQueue, &dev->eraseq_handle, &eraseq_hdr); if (ret != CS_SUCCESS) { cs_error(RegisterEraseQueue, ret); dev->eraseq_handle = NULL; ftl_detach(link); return NULL; } return link; } /* ftl_attach */ /*====================================================================== This deletes a driver "instance". The device is de-registered with Card Services. If it has been released, all local data structures are freed. Otherwise, the structures will be freed when the device is released. ======================================================================*/ static void ftl_detach(dev_link_t *link) { ftl_dev_t *dev; int i; DEBUG(0, "ftl_cs: ftl_detach(0x%p)\n", link); /* Locate device structure */ for (i = 0; i < MAX_DEV; i++) if (dev_table[i] == link) break; if (i == MAX_DEV) return; if (link->state & DEV_CONFIG) { ftl_release((u_long)link); if (link->state & DEV_STALE_CONFIG) { link->state |= DEV_STALE_LINK; return; } } dev = (ftl_dev_t *)link->priv; if (dev->eraseq_handle) CardServices(DeregisterEraseQueue, dev->eraseq_handle); if (link->handle) CardServices(DeregisterClient, link->handle); /* Unlink device structure, free bits */ dev_table[i] = NULL; kfree_s(dev, sizeof(struct ftl_dev_t)); kfree_s(link, sizeof(struct dev_link_t)); } /* ftl_detach */ /*====================================================================== ftl_config() is scheduled to run after a CARD_INSERTION event is received, to configure the PCMCIA socket, and to make the ethernet device available to the system. ======================================================================*/ static void ftl_config(dev_link_t *link) { ftl_dev_t *dev; partition_t *minor; region_info_t region; dev_node_t **tail; int i, ret, nr; DEBUG(0, "ftl_cs: ftl_config(0x%p)\n", link); /* Configure card */ link->state |= DEV_CONFIG; for (i = 0; i < MAX_DEV; i++) if (dev_table[i] == link) break; dev = (ftl_dev_t *)link->priv; tail = &link->dev; minor = dev->minor; nr = 0; region.Attributes = REGION_TYPE_CM; ret = CardServices(GetFirstRegion, link->handle, ®ion); while (ret == CS_SUCCESS) { minor->region = region; sprintf(minor->dev.dev_name, "ftl%dc%d", i, nr); minor->dev.major = major_dev; minor->dev.minor = MINOR_NR(i, nr, 0); *tail = &minor->dev; tail = &minor->dev.next; minor++; nr++; ret = CardServices(GetNextRegion, link->handle, ®ion); } *tail = NULL; link->state &= ~DEV_CONFIG_PENDING; if (nr == 0) printk(KERN_NOTICE "ftl_cs: no regions found!\n"); else { printk(KERN_INFO "ftl_cs: ftl%d:", i); minor = dev->minor; for (i = 0; i < nr; i++) { if (minor[i].region.RegionSize & 0xfffff) printk(" %u kb", minor[i].region.RegionSize >> 10); else printk(" %u mb", minor[i].region.RegionSize >> 20); } printk("\n"); } } /* ftl_config */ /*====================================================================== After a card is removed, ftl_release() will unregister the device, and release the PCMCIA configuration. If the device is still open, this will be postponed until it is closed. ======================================================================*/ static void ftl_release(u_long arg) { dev_link_t *link = (dev_link_t *)arg; int i; DEBUG(0, "ftl_cs: ftl_release(0x%p)\n", link); for (i = 0; i < MAX_DEV; i++) if (dev_table[i] == link) break; if (link->open) { DEBUG(1, "ftl_cs: release postponed, ftl%d still open\n", i); link->state |= DEV_STALE_CONFIG; return; } link->dev = NULL; if (link->win) CardServices(ReleaseWindow, link->win); link->state &= ~DEV_CONFIG; if (link->state & DEV_STALE_LINK) ftl_detach(link); } /* ftl_release */ /*====================================================================== The card status event handler. Mostly, this schedules other stuff to run after an event is received. ======================================================================*/ static void save_status(eraseq_entry_t *erase); static int ftl_event(event_t event, int priority, event_callback_args_t *args) { dev_link_t *link = args->client_data; ftl_dev_t *dev; DEBUG(1, "ftl_cs: ftl_event()\n"); switch (event) { case CS_EVENT_CARD_REMOVAL: link->state &= ~DEV_PRESENT; if (link->state & DEV_CONFIG) { link->release.expires = RUN_AT(HZ/20); add_timer(&link->release); } break; case CS_EVENT_CARD_INSERTION: link->state |= DEV_PRESENT | DEV_CONFIG_PENDING; ftl_config(link); break; case CS_EVENT_ERASE_COMPLETE: save_status((eraseq_entry_t *)(args->info)); dev = (ftl_dev_t *)link->priv; wake_up(&dev->erase_pending); break; case CS_EVENT_PM_SUSPEND: link->state |= DEV_SUSPEND; /* Fall through... */ case CS_EVENT_RESET_PHYSICAL: /* get_lock(link); */ break; case CS_EVENT_PM_RESUME: link->state &= ~DEV_SUSPEND; /* Fall through... */ case CS_EVENT_CARD_RESET: /* free_lock(link); */ break; } return 0; } /* ftl_event */ /*====================================================================== Scan_header() checks to see if a memory region contains an FTL partition. build_maps() reads all the erase unit headers, builds the erase unit map, and then builds the virtual page map. ======================================================================*/ static int scan_header(partition_t *part) { erase_unit_header_t header; mem_op_t req; int ret; /* Search first megabyte for a valid FTL header */ req.Attributes = MEM_OP_BUFFER_KERNEL; req.Count = sizeof(header); for (req.Offset = 0; req.Offset < 0x100000; req.Offset += part->region.BlockSize) { ret = CardServices(ReadMemory, part->handle, &req, &header); if (ret != CS_SUCCESS) { cs_error(ReadMemory, ret); return -1; } if (strcmp(header.DataOrgTuple+3, "FTL100") == 0) break; } if (req.Offset == 0x100000) { printk(KERN_NOTICE "ftl_cs: FTL header not found.\n"); return -1; } if ((header.NumEraseUnits > 65536) || (header.BlockSize != 9) || (header.EraseUnitSize < 10) || (header.EraseUnitSize > 31) || (header.NumTransferUnits >= header.NumEraseUnits)) { printk(KERN_NOTICE "ftl_cs: FTL header corrupt!\n"); return -1; } part->header = header; return 0; } static int build_maps(partition_t *part) { erase_unit_header_t header; mem_op_t req; u_short xvalid, xtrans, i; u_int blocks, j; int hdr_ok, ret; /* Set up erase unit maps */ part->DataUnits = part->header.NumEraseUnits - part->header.NumTransferUnits; part->EUNInfo = kmalloc(part->DataUnits * sizeof(struct eun_info_t), GFP_KERNEL); for (i = 0; i < part->DataUnits; i++) part->EUNInfo[i].Offset = 0xffffffff; part->XferInfo = kmalloc(part->header.NumTransferUnits * sizeof(struct xfer_info_t), GFP_KERNEL); req.Attributes = MEM_OP_BUFFER_KERNEL; req.Count = sizeof(header); xvalid = xtrans = 0; for (i = 0; i < part->header.NumEraseUnits; i++) { req.Offset = ((i + part->header.FirstPhysicalEUN) << part->header.EraseUnitSize); ret = CardServices(ReadMemory, part->handle, &req, &header); if (ret != CS_SUCCESS) { cs_error(ReadMemory, ret); return -1; } /* Is this a transfer partition? */ hdr_ok = (strcmp(header.DataOrgTuple+3, "FTL100") == 0); if (hdr_ok && (header.LogicalEUN < part->DataUnits) && (part->EUNInfo[header.LogicalEUN].Offset == 0xffffffff)) { part->EUNInfo[header.LogicalEUN].Offset = req.Offset; part->EUNInfo[header.LogicalEUN].EraseCount = header.EraseCount; xvalid++; } else { if (xtrans == part->header.NumTransferUnits) { printk(KERN_NOTICE "ftl_cs: format error: too many " "transfer units!\n"); return -1; } if (hdr_ok && (header.LogicalEUN == 0xffff)) { part->XferInfo[xtrans].state = XFER_PREPARED; part->XferInfo[xtrans].EraseCount = header.EraseCount; } else { part->XferInfo[xtrans].state = XFER_UNKNOWN; /* Pick anything reasonable for the erase count */ part->XferInfo[xtrans].EraseCount = part->header.EraseCount; } part->XferInfo[xtrans].Offset = req.Offset; xtrans++; } } /* Check for format trouble */ header = part->header; if ((xtrans != header.NumTransferUnits) || (xvalid+xtrans != header.NumEraseUnits)) { printk(KERN_NOTICE "ftl_cs: format error: erase units " "don't add up!\n"); return -1; } /* Set up virtual page map */ blocks = header.FormattedSize >> header.BlockSize; part->VirtualBlockMap = vmalloc(blocks * sizeof(u_int)); memset(part->VirtualBlockMap, 0xff, blocks * sizeof(u_int)); part->BlocksPerUnit = (1 << header.EraseUnitSize) >> header.BlockSize; req.Count = part->BlocksPerUnit * sizeof(u_int); part->bam_cache = kmalloc(part->BlocksPerUnit * sizeof(u_int), GFP_KERNEL); part->bam_index = 0xffff; part->FreeTotal = 0; for (i = 0; i < part->DataUnits; i++) { part->EUNInfo[i].Free = 0; part->EUNInfo[i].Deleted = 0; req.Offset = part->EUNInfo[i].Offset + header.BAMOffset; ret = CardServices(ReadMemory, part->handle, &req, part->bam_cache); if (ret != CS_SUCCESS) { cs_error(ReadMemory, ret); return -1; } for (j = 0; j < part->BlocksPerUnit; j++) { if (BLOCK_FREE(part->bam_cache[j])) { part->EUNInfo[i].Free++; part->FreeTotal++; } else if ((BLOCK_TYPE(part->bam_cache[j]) == BLOCK_DATA) && (BLOCK_NUMBER(part->bam_cache[j]) < blocks)) part->VirtualBlockMap[BLOCK_NUMBER(part->bam_cache[j])] = (i << header.EraseUnitSize) + (j << header.BlockSize); else if (BLOCK_DELETED(part->bam_cache[j])) part->EUNInfo[i].Deleted++; } } return 0; } /* build_maps */ /*====================================================================== Erase_xfer() schedules an asynchronous erase operation for a transfer unit. ======================================================================*/ static int erase_xfer(ftl_dev_t *dev, partition_t *part, u_short xfernum) { int i, ret; struct xfer_info_t *xfer; xfer = &part->XferInfo[xfernum]; DEBUG(1, "ftl_cs: erasing xfer unit at 0x%x\n", xfer->Offset); xfer->state = XFER_ERASING; /* Is there a free erase slot? */ for (;;) { for (i = 0; i < MAX_ERASE; i++) if (!ERASE_IN_PROGRESS(dev->eraseq[i].State)) break; if (i < MAX_ERASE) break; DEBUG(0, "ftl_cs: erase queue is full\n"); sleep_on(&dev->erase_pending); } /* Queue the request */ dev->eraseq[i].State = ERASE_QUEUED; dev->eraseq[i].Handle = part->handle; dev->eraseq[i].Offset = xfer->Offset; dev->eraseq[i].Size = part->region.BlockSize; dev->eraseq[i].Optional = part; ret = CardServices(CheckEraseQueue, dev->eraseq_handle); if (ret != CS_SUCCESS) { cs_error(CheckEraseQueue, ret); return -EIO; } xfer->EraseCount++; return ret; } /* erase_xfer */ /*====================================================================== Prepare_xfer() takes a freshly erased transfer unit and gives it an appropriate header. ======================================================================*/ static void save_status(eraseq_entry_t *erase) { partition_t *part; struct xfer_info_t *xfer; int i; /* Look up the transfer unit */ part = (partition_t *)(erase->Optional); for (i = 0; i < part->header.NumTransferUnits; i++) if (part->XferInfo[i].Offset == erase->Offset) break; if (i == part->header.NumTransferUnits) { printk(KERN_NOTICE "ftl_cs: internal error: " "erase lookup failed!\n"); return; } xfer = &part->XferInfo[i]; if (erase->State == ERASE_PASSED) xfer->state = XFER_ERASED; else { xfer->state = XFER_FAILED; printk(KERN_NOTICE "ftl_cs: erase failed: state = %d\n", erase->State); } } static void prepare_xfer(partition_t *part, int i) { erase_unit_header_t header; mem_op_t req; struct xfer_info_t *xfer; int nbam, ret; u_int ctl; xfer = &part->XferInfo[i]; xfer->state = XFER_FAILED; DEBUG(1, "ftl_cs: preparing xfer unit at 0x%x\n", xfer->Offset); /* Write the transfer unit header */ header = part->header; header.LogicalEUN = 0xffff; header.EraseCount = xfer->EraseCount; req.Attributes = MEM_OP_BUFFER_KERNEL; req.Count = sizeof(header); req.Offset = xfer->Offset; ret = CardServices(WriteMemory, part->handle, &req, &header); if (ret != CS_SUCCESS) { cs_error(WriteMemory, ret); return; } /* Write the BAM stub */ nbam = (part->BlocksPerUnit * sizeof(u_int) + part->header.BAMOffset + SECTOR_SIZE - 1) / SECTOR_SIZE; req.Offset = xfer->Offset + part->header.BAMOffset; req.Count = sizeof(u_int); ctl = BLOCK_CONTROL; for (i = 0; i < nbam; i++, req.Offset += sizeof(u_int)) { ret = CardServices(WriteMemory, part->handle, &req, &ctl); if (ret != CS_SUCCESS) { cs_error(WriteMemory, ret); return; } } xfer->state = XFER_PREPARED; } /* prepare_xfer */ /*====================================================================== Copy_erase_unit() takes a full erase block and a transfer unit, copies everything to the transfer unit, then swaps the block pointers. All data blocks are copied to the corresponding blocks in the target unit, so the virtual block map does not need to be updated. ======================================================================*/ static int copy_erase_unit(partition_t *part, u_short srcunit, u_short xferunit) { u_char buf[SECTOR_SIZE]; struct eun_info_t *eun; struct xfer_info_t *xfer; mem_op_t req; u_int src, dest, free, i; u_short unit; int ret; eun = &part->EUNInfo[srcunit]; xfer = &part->XferInfo[xferunit]; DEBUG(2, "ftl_cs: copying block 0x%x to 0x%x\n", eun->Offset, xfer->Offset); req.Attributes = MEM_OP_BUFFER_KERNEL; /* Read current BAM */ if (part->bam_index != srcunit) { req.Offset = eun->Offset + part->header.BAMOffset; req.Count = part->BlocksPerUnit * sizeof(u_int); ret = CardServices(ReadMemory, part->handle, &req, part->bam_cache); /* mark the cache bad, in case we get an error later */ part->bam_index = 0xffff; if (ret != CS_SUCCESS) goto read_error; } /* Write the LogicalEUN for the transfer unit */ xfer->state = XFER_UNKNOWN; req.Count = sizeof(u_short); req.Offset = xfer->Offset + 20; /* Bad! */ unit = 0x7fff; ret = CardServices(WriteMemory, part->handle, &req, &unit); if (ret != CS_SUCCESS) goto write_error; /* Copy all data blocks from source unit to transfer unit */ src = eun->Offset; dest = xfer->Offset; req.Count = SECTOR_SIZE; free = 0; ret = 0; for (i = 0; i < part->BlocksPerUnit; i++) { switch (BLOCK_TYPE(part->bam_cache[i])) { case BLOCK_CONTROL: /* This gets updated later */ break; case BLOCK_DATA: case BLOCK_REPLACEMENT: req.Offset = src; ret = CardServices(ReadMemory, part->handle, &req, buf); if (ret != CS_SUCCESS) goto read_error; req.Offset = dest; ret = CardServices(WriteMemory, part->handle, &req, buf); if (ret != CS_SUCCESS) goto write_error; break; default: /* All other blocks must be free */ part->bam_cache[i] = 0xffffffff; free++; break; } src += SECTOR_SIZE; dest += SECTOR_SIZE; } /* Write the BAM to the transfer unit */ req.Offset = xfer->Offset + part->header.BAMOffset; req.Count = part->BlocksPerUnit * sizeof(int); ret = CardServices(WriteMemory, part->handle, &req, part->bam_cache); if (ret != CS_SUCCESS) goto write_error; /* All clear? Then update the LogicalEUN again */ req.Offset = xfer->Offset + 20; /* Bad! */ req.Count = sizeof(u_short); ret = CardServices(WriteMemory, part->handle, &req, &srcunit); if (ret != CS_SUCCESS) goto write_error; /* Update the maps and usage stats*/ i = xfer->EraseCount; xfer->EraseCount = eun->EraseCount; eun->EraseCount = i; i = xfer->Offset; xfer->Offset = eun->Offset; eun->Offset = i; part->FreeTotal -= eun->Free; part->FreeTotal += free; eun->Free = free; eun->Deleted = 0; /* Now, the cache should be valid for the new block */ part->bam_index = srcunit; return CS_SUCCESS; read_error: cs_error(ReadMemory, ret); return ret; write_error: cs_error(WriteMemory, ret); return ret; } /* copy_erase_unit */ /*====================================================================== reclaim_block() picks a full erase unit and a transfer unit and then calls copy_erase_unit() to copy one to the other. Then, it schedules an erase on the expired block. What's a good way to decide which transfer unit and which erase unit to use? Beats me. My way is to always pick the transfer unit with the fewest erases, and usually pick the data unit with the most deleted blocks. But with a small probability, pick the oldest data unit instead. This means that we generally postpone the next reclaimation as long as possible, but shuffle static stuff around a bit for wear leveling. ======================================================================*/ static int reclaim_block(ftl_dev_t *dev, partition_t *part) { u_short i, eun, xfer; u_int best; int queued, ret; DEBUG(0, "ftl_cs: reclaiming space...\n"); /* Pick the least erased transfer unit */ best = 0xffffffff; xfer = 0xffff; do { queued = 0; for (i = 0; i < part->header.NumTransferUnits; i++) { if (part->XferInfo[i].state == XFER_UNKNOWN) erase_xfer(dev, part, i); if (part->XferInfo[i].state == XFER_ERASING) queued = 1; else if (part->XferInfo[i].state == XFER_ERASED) prepare_xfer(part, i); if ((part->XferInfo[i].state == XFER_PREPARED) && (part->XferInfo[i].EraseCount <= best)) { best = part->XferInfo[i].EraseCount; xfer = i; } } if (xfer == 0xffff) { if (queued) { DEBUG(1, "ftl_cs: waiting for transfer " "unit to be prepared...\n"); sleep_on(&dev->erase_pending); } else { static int ne = 0; if (++ne < 5) printk(KERN_NOTICE "ftl_cs: reclaim failed: no " "suitable transfer units!\n"); return CS_GENERAL_FAILURE; } } } while (xfer == 0xffff); eun = 0; if ((jiffies % shuffle_freq) == 0) { DEBUG(1, "ftl_cs: recycling freshest block...\n"); best = 0xffffffff; for (i = 0; i < part->DataUnits; i++) if (part->EUNInfo[i].EraseCount <= best) { best = part->EUNInfo[i].EraseCount; eun = i; } } else { best = 0; for (i = 0; i < part->DataUnits; i++) if (part->EUNInfo[i].Deleted >= best) { best = part->EUNInfo[i].Deleted; eun = i; } if (best == 0) { static int ne = 0; if (++ne < 5) printk(KERN_NOTICE "ftl_cs: reclaim failed: " "no free blocks!\n"); return CS_GENERAL_FAILURE; } } ret = copy_erase_unit(part, eun, xfer); if (ret == CS_SUCCESS) erase_xfer(dev, part, xfer); else printk(KERN_NOTICE "ftl_cs: copy_erase_unit failed!\n"); return ret; } /* reclaim_block */ /*====================================================================== Find_free() searches for a free block. If necessary, it updates the BAM cache for the erase unit containing the free block. It returns the block index -- the erase unit is just the currently cached unit. If there are no free blocks, it returns 0 -- this is never a valid data block because it contains the header. ======================================================================*/ #ifdef PSYCHO_DEBUG static void dump_lists(partition_t *part) { int i; printk(KERN_DEBUG "ftl_cs: Free total = %d\n", part->FreeTotal); for (i = 0; i < part->DataUnits; i++) printk(KERN_DEBUG "ftl_cs: unit %d: %d phys, %d free, " "%d deleted\n", i, part->EUNInfo[i].Offset >> part->header.EraseUnitSize, part->EUNInfo[i].Free, part->EUNInfo[i].Deleted); } #endif static u_int find_free(partition_t *part) { u_short stop, eun; u_int blk; mem_op_t req; int ret; /* Find an erase unit with some free space */ stop = (part->bam_index == 0xffff) ? 0 : part->bam_index; eun = stop; do { if (part->EUNInfo[eun].Free != 0) break; /* Wrap around at end of table */ if (++eun == part->DataUnits) eun = 0; } while (eun != stop); if (part->EUNInfo[eun].Free == 0) return 0; /* Is this unit's BAM cached? */ if (eun != part->bam_index) { /* Invalidate cache */ part->bam_index = 0xffff; req.Attributes = MEM_OP_BUFFER_KERNEL; req.Count = part->BlocksPerUnit * sizeof(u_int); req.Offset = part->EUNInfo[eun].Offset + part->header.BAMOffset; ret = CardServices(ReadMemory, part->handle, &req, part->bam_cache); if (ret != CS_SUCCESS) { cs_error(ReadMemory, ret); return 0; } part->bam_index = eun; } /* Find a free block */ for (blk = 0; blk < part->BlocksPerUnit; blk++) if (BLOCK_FREE(part->bam_cache[blk])) break; if (blk == part->BlocksPerUnit) { #ifdef PSYCHO_DEBUG static int ne = 0; if (++ne == 1) dump_lists(part); #endif printk(KERN_NOTICE "ftl_cs: bad free list!\n"); return 0; } DEBUG(2, "ftl_cs: found free block at %d in %d\n", blk, eun); return blk; } /* find_free */ /*====================================================================== This gets a memory handle for the region corresponding to the minor device number. ======================================================================*/ static int ftl_open(struct inode *inode, struct file *file) { int minor = MINOR(inode->i_rdev); dev_link_t *link; ftl_dev_t *dev; partition_t *partition; open_mem_t open; int ret; DEBUG(0, "ftl_cs: ftl_open(%d)\n", minor); link = dev_table[DEVICE_NR(minor)]; if (!DEV_OK(link)) return -ENODEV; dev = (ftl_dev_t *)link->priv; partition = &dev->minor[REGION_NR(minor)]; if (partition->region.RegionSize == 0) return -ENODEV; while (partition->locked) sleep_on(&ftl_wait_open); if (partition->handle == NULL) { partition->handle = (memory_handle_t)link->handle; open.Attributes = partition->region.Attributes; open.Offset = partition->region.CardOffset; ret = CardServices(OpenMemory, &partition->handle, &open); if (ret != CS_SUCCESS) { cs_error(OpenMemory, ret); return -ENODEV; } if ((scan_header(partition) == 0) && (build_maps(partition) == 0)) { partition->state = FTL_FORMATTED; ftl_reread_partitions(minor); #ifdef PCMCIA_DEBUG printk(KERN_INFO "ftl_cs: opening %d kb FTL partition\n", partition->header.FormattedSize >> 10); #endif } else { CardServices(CloseMemory, partition->handle); partition->handle = NULL; printk(KERN_NOTICE "ftl_cs: FTL partition is invalid.\n"); return -ENODEV; } } partition->open++; link->open++; MOD_INC_USE_COUNT; return 0; } /* ftl_open */ /*====================================================================*/ static FS_RELEASE_T ftl_close(struct inode *inode, struct file *file) { dev_link_t *link; int minor = MINOR(inode->i_rdev); ftl_dev_t *dev; partition_t *part; int i; DEBUG(0, "ftl_cs: ftl_close(%d)\n", minor); /* Flush all writes */ fsync_dev(inode->i_rdev); INVALIDATE_INODES(inode->i_rdev); invalidate_buffers(inode->i_rdev); link = dev_table[DEVICE_NR(minor)]; dev = (ftl_dev_t *)link->priv; part = &dev->minor[REGION_NR(minor)]; /* Wait for any pending erase operations to complete */ for (i = 0; i < part->header.NumTransferUnits; i++) { if (part->XferInfo[i].state == XFER_ERASING) sleep_on(&dev->erase_pending); if (part->XferInfo[i].state == XFER_ERASED) prepare_xfer(part, i); } link->open--; part->open--; if (part->open == 0) { CardServices(CloseMemory, part->handle); part->handle = NULL; if (part->VirtualBlockMap) { vfree(part->VirtualBlockMap); part->VirtualBlockMap = NULL; } if (part->VirtualPageMap) { kfree(part->VirtualPageMap); part->VirtualPageMap = NULL; } if (part->EUNInfo) { kfree(part->EUNInfo); part->EUNInfo = NULL; } if (part->XferInfo) { kfree(part->XferInfo); part->XferInfo = NULL; } if (part->bam_cache) { kfree(part->bam_cache); part->bam_cache = NULL; } } MOD_DEC_USE_COUNT; return (FS_RELEASE_T)0; } /* ftl_close */ /*====================================================================== Read a series of sectors from an FTL partition. ======================================================================*/ static int ftl_read(partition_t *part, caddr_t buffer, u_long sector, u_long nblocks) { mem_op_t req; u_int log_addr, bsize; u_long i; int ret; DEBUG(2, "ftl_cs: ftl_read(0x%p, 0x%lx, %ld)\n", part->handle, sector, nblocks); if (!(part->state & FTL_FORMATTED)) { printk(KERN_NOTICE "ftl_cs: bad partition\n"); return -EIO; } bsize = part->region.BlockSize; req.Attributes = MEM_OP_BUFFER_KERNEL; req.Count = SECTOR_SIZE; for (i = 0; i < nblocks; i++) { if (((sector+i) * SECTOR_SIZE) >= part->header.FormattedSize) { printk(KERN_NOTICE "ftl_cs: bad read offset\n"); return -EIO; } log_addr = part->VirtualBlockMap[sector+i]; if (log_addr == 0xffffffff) memset(buffer, 0, SECTOR_SIZE); else { req.Offset = (part->EUNInfo[log_addr / bsize].Offset + (log_addr % bsize)); ret = CardServices(ReadMemory, part->handle, &req, buffer); if (ret != CS_SUCCESS) { cs_error(ReadMemory, ret); return -EIO; } } buffer += SECTOR_SIZE; } return 0; } /* ftl_read */ /*====================================================================== Write a series of sectors to an FTL partition ======================================================================*/ static int set_bam_entry(partition_t *part, u_int log_addr, u_int virt_addr) { mem_op_t req; u_int bsize, blk; #ifdef PSYCHO_DEBUG u_int old_addr; #endif u_short eun; int ret; DEBUG(2, "ftl_cs: set_bam_entry(0x%p, 0x%x, 0x%x)\n", part->handle, log_addr, virt_addr); bsize = part->region.BlockSize; eun = log_addr / bsize; blk = (log_addr % bsize) / SECTOR_SIZE; req.Attributes = MEM_OP_BUFFER_KERNEL; req.Count = sizeof(u_int); req.Offset = (part->EUNInfo[eun].Offset + blk * sizeof(u_int) + part->header.BAMOffset); #ifdef PSYCHO_DEBUG CardServices(ReadMemory, part->handle, &req, &old_addr); if (((virt_addr == 0xfffffffe) && !BLOCK_FREE(old_addr)) || ((virt_addr == 0) && (BLOCK_TYPE(old_addr) != BLOCK_DATA)) || (!BLOCK_DELETED(virt_addr) && (old_addr != 0xfffffffe))) { static int ne = 0; if (++ne < 5) { printk(KERN_NOTICE "ftl_cs: set_bam_entry() inconsistency!\n"); printk(KERN_NOTICE "ftl_cs: log_addr = 0x%x, old = 0x%x" ", new = 0x%x\n", log_addr, old_addr, virt_addr); } return CS_GENERAL_FAILURE; } #endif if (part->bam_index == eun) { #ifdef PSYCHO_DEBUG if (part->bam_cache[blk] != old_addr) { static int ne = 0; if (++ne < 5) { printk(KERN_NOTICE "ftl_cs: set_bam_entry() " "inconsistency!\n"); printk(KERN_NOTICE "ftl_cs: log_addr = 0x%x, cache" " = 0x%x, card = 0x%x\n", part->bam_cache[blk], old_addr); } return CS_GENERAL_FAILURE; } #endif part->bam_cache[blk] = virt_addr; } ret = CardServices(WriteMemory, part->handle, &req, &virt_addr); if (ret != CS_SUCCESS) { printk(KERN_NOTICE "ftl_cs: set_bam_entry() failed!\n"); printk(KERN_NOTICE "ftl_cs: log_addr = 0x%x, new = 0x%x\n", log_addr, virt_addr); cs_error(WriteMemory, ret); } return ret; } /* set_bam_entry */ static int ftl_write(ftl_dev_t *dev, partition_t *part, caddr_t buffer, u_long sector, u_long nblocks) { mem_op_t req; u_int bsize, log_addr, virt_addr, old_addr, blk; u_long i; int ret; DEBUG(2, "ftl_cs: ftl_write(0x%p, %ld, %ld)\n", part->handle, sector, nblocks); if (!(part->state & FTL_FORMATTED)) { printk(KERN_NOTICE "ftl_cs: bad partition\n"); return -EIO; } /* See if we need to reclaim space, before we start */ while (part->FreeTotal < nblocks) { ret = reclaim_block(dev, part); if (ret != CS_SUCCESS) return ret; } bsize = part->region.BlockSize; req.Attributes = MEM_OP_BUFFER_KERNEL; req.Count = SECTOR_SIZE; virt_addr = sector * SECTOR_SIZE | BLOCK_DATA; for (i = 0; i < nblocks; i++) { if (virt_addr >= part->header.FormattedSize) { printk(KERN_NOTICE "ftl_cs: bad write offset\n"); return -EIO; } /* Grab a free block */ blk = find_free(part); if (blk == 0) { static int ne = 0; if (++ne < 5) printk(KERN_NOTICE "ftl_cs: internal error: " "no free blocks!\n"); return -ENOSPC; } /* Tag the BAM entry, and write the new block */ log_addr = part->bam_index * bsize + blk * SECTOR_SIZE; part->EUNInfo[part->bam_index].Free--; part->FreeTotal--; if (set_bam_entry(part, log_addr, 0xfffffffe)) return -EIO; part->EUNInfo[part->bam_index].Deleted++; req.Offset = (part->EUNInfo[part->bam_index].Offset + blk * SECTOR_SIZE); ret = CardServices(WriteMemory, part->handle, &req, buffer); if (ret != CS_SUCCESS) { printk(KERN_NOTICE "ftl_cs: block write failed!\n"); printk(KERN_NOTICE "ftl_cs: log_addr = 0x%x, virt_addr" " = 0x%x, Offset = 0x%x\n", log_addr, virt_addr, req.Offset); cs_error(WriteMemory, ret); return -EIO; } /* Only delete the old entry when the new entry is ready */ old_addr = part->VirtualBlockMap[sector+i]; if (old_addr != 0xffffffff) { part->VirtualBlockMap[sector+i] = 0xffffffff; part->EUNInfo[old_addr/bsize].Deleted++; if (set_bam_entry(part, old_addr, 0) != CS_SUCCESS) return -EIO; } /* Finally, set up the new pointers */ if (set_bam_entry(part, log_addr, virt_addr)) return -EIO; part->VirtualBlockMap[sector+i] = log_addr; part->EUNInfo[part->bam_index].Deleted--; buffer += SECTOR_SIZE; virt_addr += SECTOR_SIZE; } return 0; } /* ftl_write */ /*====================================================================== IOCTL calls for getting device parameters. ======================================================================*/ static int ftl_ioctl(struct inode *inode, struct file *file, u_int cmd, u_long arg) { struct hd_geometry *geo = (struct hd_geometry *)arg; int ret = 0, minor = MINOR(inode->i_rdev); dev_link_t *link; ftl_dev_t *dev; partition_t *part; u_long sect; link = dev_table[DEVICE_NR(minor)]; if (!DEV_OK(link)) return -ENODEV; dev = (ftl_dev_t *)link->priv; part = &dev->minor[REGION_NR(minor)]; switch (cmd) { case HDIO_GETGEO: ret = verify_area(VERIFY_WRITE, (long *)arg, sizeof(*geo)); if (ret) return ret; /* Sort of arbitrary: round size down to 4K boundary */ sect = part->header.FormattedSize/SECTOR_SIZE; put_user(1, (char *)&geo->heads); put_user(8, (char *)&geo->sectors); put_user((sect>>3), (short *)&geo->cylinders); put_user(ftl_hd[minor].start_sect, (u_long *)&geo->start); break; case BLKGETSIZE: ret = verify_area(VERIFY_WRITE, (long *)arg, sizeof(long)); if (ret) return ret; put_user(part->header.FormattedSize/SECTOR_SIZE, (long *)arg); break; case BLKRRPART: ret = ftl_reread_partitions(minor); break; #if (LINUX_VERSION_CODE < VERSION(2,3,3)) case BLKFLSBUF: if (!suser()) return -EACCES; fsync_dev(inode->i_rdev); invalidate_buffers(inode->i_rdev); break; RO_IOCTLS(inode->i_rdev, arg); #else case BLKROSET: case BLKROGET: case BLKFLSBUF: ret = blk_ioctl(inode->i_rdev, cmd, arg); break; #endif default: ret = -EINVAL; } return ret; } /* ftl_ioctl */ /*====================================================================== Handler for block device requests ======================================================================*/ static int ftl_reread_partitions(int minor) { int d = DEVICE_NR(minor), r = REGION_NR(minor); ftl_dev_t *dev = dev_table[d]->priv; partition_t *part = &(dev->minor[r]); int i, whole; DEBUG(0, "ftl_cs: ftl_reread_partition(%d)\n", minor); if (part->locked || (part->open > 1)) return -EBUSY; part->locked = 1; whole = minor & ~(MAX_PART-1); for (i = 0; i < MAX_PART; i++) { if (ftl_hd[whole+i].nr_sects > 0) { kdev_t rdev = MKDEV(major_dev, whole+i); sync_dev(rdev); INVALIDATE_INODES(rdev); invalidate_buffers(rdev); } ftl_hd[whole+i].start_sect = 0; ftl_hd[whole+i].nr_sects = 0; } if (scan_header(part) == 0) ftl_hd[whole].nr_sects = part->header.FormattedSize/SECTOR_SIZE; else ftl_hd[whole].start_sect = -1; resetup_one_dev(&ftl_gendisk, whole >> PART_BITS); #ifdef PCMCIA_DEBUG for (i = 0; i < MAX_PART; i++) { if (ftl_hd[whole+i].nr_sects > 0) printk(KERN_INFO " %d: start %ld size %ld\n", i, ftl_hd[whole+i].start_sect, ftl_hd[whole+i].nr_sects); } #endif part->locked = 0; wake_up(&ftl_wait_open); return 0; } /*====================================================================== Handler for block device requests ======================================================================*/ static void do_ftl_request(void) { int ret, minor; dev_link_t *link; ftl_dev_t *dev; partition_t *part; DEBUG(2, "ftl_cs: starting do_ftl_request()\n"); do { sti(); INIT_REQUEST; minor = MINOR(CURRENT->rq_dev); link = dev_table[DEVICE_NR(minor)]; dev = (ftl_dev_t *)link->priv; part = &dev->minor[REGION_NR(minor)]; ret = 0; switch (CURRENT->cmd) { case READ: ret = ftl_read(part, CURRENT->buffer, CURRENT->sector+ftl_hd[minor].start_sect, CURRENT->current_nr_sectors); break; case WRITE: ret = ftl_write(dev, part, CURRENT->buffer, CURRENT->sector+ftl_hd[minor].start_sect, CURRENT->current_nr_sectors); break; default: panic("ftl_cs: unknown block command!\n"); } end_request((ret == 0) ? 1 : 0); } while (1); } /* do_ftl_request */ /*====================================================================*/ int init_module(void) { servinfo_t serv; int i; DEBUG(0, "%s\n", version); CardServices(GetCardServicesInfo, &serv); if (serv.Revision != CS_RELEASE_CODE) { printk(KERN_NOTICE "ftl_cs: Card Services release " "does not match!\n"); return -1; } register_pcmcia_driver(&dev_info, &ftl_attach, &ftl_detach); major_dev = register_blkdev(major_dev, "ftl", &ftl_blk_fops); if (major_dev == 0) { printk(KERN_NOTICE "ftl_cs: unable to grab major " "device number!\n"); return -ENODEV; } for (i = 0; i < MINOR_NR(MAX_DEV, 0, 0); i++) ftl_blocksizes[i] = 1024; for (i = 0; i < MAX_DEV*MAX_PART; i++) { ftl_hd[i].nr_sects = 0; ftl_hd[i].start_sect = -1; } blksize_size[major_dev] = ftl_blocksizes; ftl_gendisk.major = major_dev; blk_dev[major_dev].request_fn = DEVICE_REQUEST; ftl_gendisk.next = gendisk_head; gendisk_head = &ftl_gendisk; init_waitqueue_head(&ftl_wait_open); return 0; } void cleanup_module(void) { int i; dev_link_t *link; struct gendisk *gd, **gdp; DEBUG(0, "ftl_cs: unloading\n"); unregister_pcmcia_driver(&dev_info); if (major_dev != 0) { unregister_blkdev(major_dev, "ftl"); blk_dev[major_dev].request_fn = NULL; blksize_size[major_dev] = NULL; } for (i = 0; i < MAX_DEV; i++) { link = dev_table[i]; if (link) { if (link->state & DEV_CONFIG) ftl_release((u_long)link); ftl_detach(link); } } for (gdp = &gendisk_head; *gdp; gdp = &((*gdp)->next)) if (*gdp == &ftl_gendisk) { gd = *gdp; *gdp = gd->next; break; } }