/*====================================================================== PCMCIA Card Information Structure parser cistpl.c 1.68 1999/07/20 16:01:23 The contents of this file are subject to the Mozilla Public License Version 1.1 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.mozilla.org/MPL/ Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License for the specific language governing rights and limitations under the License. The initial developer of the original code is David A. Hinds . Portions created by David A. Hinds are Copyright (C) 1998 David A. Hinds. All Rights Reserved. ======================================================================*/ #include #define __NO_VERSION__ #include #ifdef __LINUX__ #include #include #include #include #include #include #include #include #include #include #include #endif #include #include #include #include #include #include #include "cs_internal.h" #include "rsrc_mgr.h" #define MIN(a, b) (((a) < (b)) ? (a) : (b)) static const u_char mantissa[] = { 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90 }; static const u_int exponent[] = { 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000 }; /* Convert an extended speed byte to a time in nanoseconds */ #define SPEED_CVT(v) \ (mantissa[(((v)>>3)&15)-1] * exponent[(v)&7] / 10) /* Convert a power byte to a current in 0.1 microamps */ #define POWER_CVT(v) \ (mantissa[((v)>>3)&15] * exponent[(v)&7] / 10) #define POWER_SCALE(v) (exponent[(v)&7]) /* Upper limit on reasonable # of tuples */ #define MAX_TUPLES 200 /*====================================================================== Low-level functions to read and write CIS memory. I think the write routine is only useful for writing one-byte registers. ======================================================================*/ void read_cis_mem(socket_info_t *s, int attr, u_int addr, u_int len, void *ptr) { pccard_mem_map *mem = &s->cis_mem; u_char *sys; u_int inc = 1; DEBUG(3, ("cs: read_cis_mem(%d, %#x, %u)\n", attr, addr, len)); if (setup_cis_mem(s) != 0) { memset(ptr, 0xff, len); return; } mem->flags |= MAP_ACTIVE; mem->flags &= ~MAP_ATTRIB; if (attr) { mem->flags |= MAP_ATTRIB; inc++; addr *= 2; } sys = s->cis_virt + (addr & (s->cap.map_size-1)); mem->card_start = addr & ~(s->cap.map_size-1); for (; len > 0; sys = s->cis_virt) { s->ss_entry(s->sock, SS_SetMemMap, mem); DEBUG(3, ("cs: %#2.2x %#2.2x %#2.2x %#2.2x %#2.2x ...\n", bus_readb(s->cap.bus, sys), bus_readb(s->cap.bus, sys+inc), bus_readb(s->cap.bus, sys+2*inc), bus_readb(s->cap.bus, sys+3*inc), bus_readb(s->cap.bus, sys+4*inc))); for ( ; len > 0; len--, ((u_char *)ptr)++, sys += inc) { if (sys == s->cis_virt+s->cap.map_size) break; *(u_char *)ptr = bus_readb(s->cap.bus, sys); } mem->card_start += s->cap.map_size; } } void write_cis_mem(socket_info_t *s, int attr, u_int addr, u_int len, void *ptr) { pccard_mem_map *mem = &s->cis_mem; u_char *sys; int inc = 1; DEBUG(3, ("cs: write_cis_mem(%d, %#x, %u)\n", attr, addr, len)); if (setup_cis_mem(s) != 0) return; mem->flags &= ~MAP_ATTRIB; if (attr) { mem->flags |= MAP_ATTRIB; inc++; addr *= 2; } sys = s->cis_virt + (addr & (s->cap.map_size-1)); mem->card_start = addr & ~(s->cap.map_size-1); for (; len > 0; sys = s->cis_virt) { s->ss_entry(s->sock, SS_SetMemMap, mem); for ( ; len > 0; len--, ((u_char *)ptr)++, sys += inc) { if (sys == s->cis_virt+s->cap.map_size) break; bus_writeb(s->cap.bus, *(u_char *)ptr, sys); } mem->card_start += s->cap.map_size; } } /*====================================================================== This is tricky... when we set up CIS memory, we try to validate the memory window space allocations. ======================================================================*/ /* Scratch pointer to the socket we use for validation */ static socket_info_t *vs = NULL; /* Validation function for cards with a valid CIS */ static int cis_readable(u_long base) { cisinfo_t info1, info2; int ret; vs->cis_mem.sys_start = base; vs->cis_mem.sys_stop = base+vs->cap.map_size-1; vs->cis_virt = bus_ioremap(vs->cap.bus, base, vs->cap.map_size); ret = validate_cis(vs->clients, &info1); /* invalidate mapping and CIS cache */ bus_iounmap(vs->cap.bus, vs->cis_virt); vs->cis_used = 0; if ((ret != 0) || (info1.Chains == 0)) return 0; vs->cis_mem.sys_start = base+vs->cap.map_size; vs->cis_mem.sys_stop = base+2*vs->cap.map_size-1; vs->cis_virt = bus_ioremap(vs->cap.bus, base+vs->cap.map_size, vs->cap.map_size); ret = validate_cis(vs->clients, &info2); bus_iounmap(vs->cap.bus, vs->cis_virt); vs->cis_used = 0; return ((ret == 0) && (info1.Chains == info2.Chains)); } /* Validation function for simple memory cards */ static int checksum(u_long base) { int i, a, b, d; vs->cis_mem.sys_start = base; vs->cis_mem.sys_stop = base+vs->cap.map_size-1; vs->cis_virt = bus_ioremap(vs->cap.bus, base, vs->cap.map_size); vs->cis_mem.card_start = 0; vs->cis_mem.flags = MAP_ACTIVE; vs->ss_entry(vs->sock, SS_SetMemMap, &vs->cis_mem); /* Don't bother checking every word... */ a = 0; b = -1; for (i = 0; i < vs->cap.map_size; i += 44) { d = bus_readl(vs->cap.bus, vs->cis_virt+i); a += d; b &= d; } bus_iounmap(vs->cap.bus, vs->cis_virt); return (b == -1) ? -1 : (a>>1); } static int checksum_match(u_long base) { int a = checksum(base), b = checksum(base+vs->cap.map_size); return ((a == b) && (a >= 0)); } int setup_cis_mem(socket_info_t *s) { if (s->cis_mem.sys_start == 0) { int low = !(s->cap.features & SS_CAP_PAGE_REGS); vs = s; validate_mem(cis_readable, checksum_match, low); s->cis_mem.sys_start = 0; vs = NULL; if (find_mem_region(&s->cis_mem.sys_start, s->cap.map_size, "card services", s->cap.map_size, low)) { printk(KERN_NOTICE "cs: unable to map card memory!\n"); return CS_OUT_OF_RESOURCE; } s->cis_mem.sys_stop = s->cis_mem.sys_start+s->cap.map_size-1; s->cis_mem.flags |= MAP_ACTIVE; s->cis_virt = bus_ioremap(s->cap.bus, s->cis_mem.sys_start, s->cap.map_size); } return 0; } void release_cis_mem(socket_info_t *s) { if (s->cis_mem.sys_start != 0) { s->cis_mem.flags &= ~MAP_ACTIVE; s->ss_entry(s->sock, SS_SetMemMap, &s->cis_mem); vacate_mem_region(s->cis_mem.sys_start, s->cap.map_size); bus_iounmap(s->cap.bus, s->cis_virt); s->cis_mem.sys_start = 0; } } /*====================================================================== This is a wrapper around read_cis_mem, with the same interface, but which caches information, for cards whose CIS may not be readable all the time. ======================================================================*/ static void read_cis_cache(socket_info_t *s, int attr, u_int addr, u_int len, void *ptr) { int i; char *caddr; if (s->fake_cis) { if (s->fake_cis_len > addr+len) memcpy(ptr, s->fake_cis+addr, len); else memset(ptr, 0xff, len); return; } caddr = s->cis_cache; for (i = 0; i < s->cis_used; i++) { if ((s->cis_table[i].addr == addr) && (s->cis_table[i].len == len) && (s->cis_table[i].attr == attr)) break; caddr += s->cis_table[i].len; } if (i < s->cis_used) { memcpy(ptr, caddr, len); return; } #ifdef CONFIG_CARDBUS if (s->state & SOCKET_CARDBUS) read_cb_mem(s, 0, attr, addr, len, ptr); else #endif read_cis_mem(s, attr, addr, len, ptr); /* Copy data into the cache, if there is room */ if ((i < MAX_CIS_TABLE) && (caddr+len < s->cis_cache+MAX_CIS_DATA)) { s->cis_table[i].addr = addr; s->cis_table[i].len = len; s->cis_table[i].attr = attr; s->cis_used++; memcpy(caddr, ptr, len); } } /*====================================================================== This verifies if the CIS of a card matches what is in the CIS cache. ======================================================================*/ int verify_cis_cache(socket_info_t *s) { char buf[256], *caddr; int i; caddr = s->cis_cache; for (i = 0; i < s->cis_used; i++) { #ifdef CONFIG_CARDBUS if (s->state & SOCKET_CARDBUS) read_cb_mem(s, 0, s->cis_table[i].attr, s->cis_table[i].addr, s->cis_table[i].len, buf); else #endif read_cis_mem(s, s->cis_table[i].attr, s->cis_table[i].addr, s->cis_table[i].len, buf); if (memcmp(buf, caddr, s->cis_table[i].len) != 0) break; caddr += s->cis_table[i].len; } return (i < s->cis_used); } /*====================================================================== For really bad cards, we provide a facility for uploading a replacement CIS. ======================================================================*/ int replace_cis(client_handle_t handle, cisdump_t *cis) { socket_info_t *s; if (CHECK_HANDLE(handle)) return CS_BAD_HANDLE; s = SOCKET(handle); if (s->fake_cis != NULL) { kfree(s->fake_cis); s->fake_cis = NULL; } if (cis->Length > CISTPL_MAX_CIS_SIZE) return CS_BAD_SIZE; s->fake_cis = kmalloc(cis->Length, GFP_KERNEL); if (s->fake_cis == NULL) return CS_OUT_OF_RESOURCE; s->fake_cis_len = cis->Length; memcpy(s->fake_cis, cis->Data, cis->Length); return CS_SUCCESS; } /*====================================================================== The high-level CIS tuple services ======================================================================*/ typedef struct tuple_flags { u_int link_space:3; u_int has_link:1; u_int mfc_fn:3; u_int space:3; } tuple_flags; #define LINK_SPACE(f) (((tuple_flags *)(&(f)))->link_space) #define HAS_LINK(f) (((tuple_flags *)(&(f)))->has_link) #define MFC_FN(f) (((tuple_flags *)(&(f)))->mfc_fn) #define SPACE(f) (((tuple_flags *)(&(f)))->space) int get_next_tuple(client_handle_t handle, tuple_t *tuple); int get_first_tuple(client_handle_t handle, tuple_t *tuple) { socket_info_t *s; if (CHECK_HANDLE(handle)) return CS_BAD_HANDLE; s = SOCKET(handle); if (!(s->state & SOCKET_PRESENT)) return CS_NO_CARD; tuple->TupleLink = tuple->Flags = 0; #ifdef CONFIG_CARDBUS if (s->state & SOCKET_CARDBUS) { u_int ptr; pcibios_read_config_dword(s->cap.cardbus, 0, 0x28, &ptr); tuple->CISOffset = ptr & ~7; SPACE(tuple->Flags) = (ptr & 7); } else #endif { /* Assume presence of a LONGLINK_C to address 0 */ tuple->CISOffset = tuple->LinkOffset = 0; SPACE(tuple->Flags) = HAS_LINK(tuple->Flags) = 1; } if (!(s->state & SOCKET_CARDBUS) && (s->functions > 1) && !(tuple->Attributes & TUPLE_RETURN_COMMON)) { cisdata_t req = tuple->DesiredTuple; tuple->DesiredTuple = CISTPL_LONGLINK_MFC; if (get_next_tuple(handle, tuple) == CS_SUCCESS) { tuple->DesiredTuple = CISTPL_LINKTARGET; if (get_next_tuple(handle, tuple) != CS_SUCCESS) return CS_NO_MORE_ITEMS; } else tuple->CISOffset = tuple->TupleLink = 0; tuple->DesiredTuple = req; } return get_next_tuple(handle, tuple); } static int follow_link(socket_info_t *s, tuple_t *tuple) { u_char link[5]; u_int ofs; if (MFC_FN(tuple->Flags)) { /* Get indirect link from the MFC tuple */ read_cis_cache(s, LINK_SPACE(tuple->Flags), tuple->LinkOffset, 5, link); ofs = le32_to_cpu(*(u_int *)(link+1)); SPACE(tuple->Flags) = (link[0] == CISTPL_MFC_ATTR); /* Move to the next indirect link */ tuple->LinkOffset += 5; MFC_FN(tuple->Flags)--; } else if (HAS_LINK(tuple->Flags)) { ofs = tuple->LinkOffset; SPACE(tuple->Flags) = LINK_SPACE(tuple->Flags); HAS_LINK(tuple->Flags) = 0; } else { return -1; } if (!(s->state & SOCKET_CARDBUS) && SPACE(tuple->Flags)) { /* This is ugly, but a common CIS error is to code the long link offset incorrectly, so we check the right spot... */ read_cis_cache(s, SPACE(tuple->Flags), ofs, 5, link); if ((link[0] == CISTPL_LINKTARGET) && (link[1] >= 3) && (strncmp(link+2, "CIS", 3) == 0)) return ofs; /* Then, we try the wrong spot... */ ofs = ofs >> 1; } read_cis_cache(s, SPACE(tuple->Flags), ofs, 5, link); if ((link[0] != CISTPL_LINKTARGET) || (link[1] < 3) || (strncmp(link+2, "CIS", 3) != 0)) return -1; return ofs; } int get_next_tuple(client_handle_t handle, tuple_t *tuple) { socket_info_t *s; u_char link[2], tmp; int ofs, i, attr; if (CHECK_HANDLE(handle)) return CS_BAD_HANDLE; s = SOCKET(handle); if (!(s->state & SOCKET_PRESENT)) return CS_NO_CARD; link[1] = tuple->TupleLink; ofs = tuple->CISOffset + tuple->TupleLink; attr = SPACE(tuple->Flags); for (i = 0; i < MAX_TUPLES; i++) { if (link[1] == 0xff) { link[0] = CISTPL_END; } else { read_cis_cache(s, attr, ofs, 2, link); if (link[0] == CISTPL_NULL) { ofs++; continue; } } /* End of chain? Follow long link if possible */ if (link[0] == CISTPL_END) { if ((ofs = follow_link(s, tuple)) < 0) return CS_NO_MORE_ITEMS; attr = SPACE(tuple->Flags); read_cis_cache(s, attr, ofs, 2, link); } /* Is this a link tuple? Make a note of it */ if ((link[0] == CISTPL_LONGLINK_A) || (link[0] == CISTPL_LONGLINK_C) || (link[0] == CISTPL_LONGLINK_MFC) || (link[0] == CISTPL_LINKTARGET) || (link[0] == CISTPL_NO_LINK)) { switch (link[0]) { case CISTPL_LONGLINK_A: HAS_LINK(tuple->Flags) = 1; LINK_SPACE(tuple->Flags) = 1; read_cis_cache(s, attr, ofs+2, 4, &tuple->LinkOffset); break; case CISTPL_LONGLINK_C: HAS_LINK(tuple->Flags) = 1; LINK_SPACE(tuple->Flags) = 0; read_cis_cache(s, attr, ofs+2, 4, &tuple->LinkOffset); break; case CISTPL_LONGLINK_MFC: tuple->LinkOffset = ofs + 3; LINK_SPACE(tuple->Flags) = attr; if (handle->Function == BIND_FN_ALL) { /* Follow all the MFC links */ read_cis_cache(s, attr, ofs+2, 1, &tmp); MFC_FN(tuple->Flags) = tmp; } else { /* Follow exactly one of the links */ MFC_FN(tuple->Flags) = 1; tuple->LinkOffset += handle->Function * 5; } break; case CISTPL_NO_LINK: HAS_LINK(tuple->Flags) = 0; break; } if ((tuple->Attributes & TUPLE_RETURN_LINK) && (tuple->DesiredTuple == RETURN_FIRST_TUPLE)) break; } else if (tuple->DesiredTuple == RETURN_FIRST_TUPLE) break; if (link[0] == tuple->DesiredTuple) break; ofs += link[1] + 2; } if (i == MAX_TUPLES) { DEBUG(1, ("cs: overrun in get_next_tuple for socket %d\n", handle->Socket)); return CS_NO_MORE_ITEMS; } tuple->TupleCode = link[0]; tuple->TupleLink = link[1]; tuple->CISOffset = ofs + 2; return CS_SUCCESS; } /*====================================================================*/ int get_tuple_data(client_handle_t handle, tuple_t *tuple) { socket_info_t *s; u_int len; if (CHECK_HANDLE(handle)) return CS_BAD_HANDLE; s = SOCKET(handle); if (tuple->TupleLink < tuple->TupleOffset) return CS_NO_MORE_ITEMS; len = tuple->TupleLink - tuple->TupleOffset; tuple->TupleDataLen = tuple->TupleLink; if (len == 0) return CS_SUCCESS; read_cis_cache(s, SPACE(tuple->Flags), tuple->CISOffset + tuple->TupleOffset, MIN(len, tuple->TupleDataMax), tuple->TupleData); return CS_SUCCESS; } /*====================================================================== Parsing routines for individual tuples ======================================================================*/ static int parse_device(tuple_t *tuple, cistpl_device_t *device) { int i; u_char scale; u_char *p, *q; p = (u_char *)tuple->TupleData; q = p + tuple->TupleDataLen; device->ndev = 0; for (i = 0; i < CISTPL_MAX_DEVICES; i++) { if (*p == 0xff) break; device->dev[i].type = (*p >> 4); device->dev[i].wp = (*p & 0x08) ? 1 : 0; switch (*p & 0x07) { case 0: device->dev[i].speed = 0; break; case 1: device->dev[i].speed = 250; break; case 2: device->dev[i].speed = 200; break; case 3: device->dev[i].speed = 150; break; case 4: device->dev[i].speed = 100; break; case 7: if (++p == q) return CS_BAD_TUPLE; if (p == q) return CS_BAD_TUPLE; device->dev[i].speed = SPEED_CVT(*p); while (*p & 0x80) if (++p == q) return CS_BAD_TUPLE; break; default: return CS_BAD_TUPLE; } if (++p == q) return CS_BAD_TUPLE; if (*p == 0xff) break; scale = *p & 7; if (scale == 7) return CS_BAD_TUPLE; device->dev[i].size = ((*p >> 3) + 1) * (512 << (scale*2)); device->ndev++; if (++p == q) break; } return CS_SUCCESS; } /*====================================================================*/ static int parse_checksum(tuple_t *tuple, cistpl_checksum_t *csum) { u_char *p; if (tuple->TupleDataLen < 5) return CS_BAD_TUPLE; p = (u_char *)tuple->TupleData; csum->addr = tuple->CISOffset+(short)le16_to_cpu(*(u_short *)p)-2; csum->len = le16_to_cpu(*(u_short *)(p + 2)); csum->sum = *(p+4); return CS_SUCCESS; } /*====================================================================*/ static int parse_longlink(tuple_t *tuple, cistpl_longlink_t *link) { if (tuple->TupleDataLen < 4) return CS_BAD_TUPLE; link->addr = le32_to_cpu(*(u_int *)tuple->TupleData); return CS_SUCCESS; } /*====================================================================*/ static int parse_longlink_mfc(tuple_t *tuple, cistpl_longlink_mfc_t *link) { u_char *p; int i; p = (u_char *)tuple->TupleData; link->nfn = *p; p++; if (tuple->TupleDataLen <= link->nfn*5) return CS_BAD_TUPLE; for (i = 0; i < link->nfn; i++) { link->fn[i].space = *p; p++; link->fn[i].addr = le32_to_cpu(*(u_int *)p); p += 4; } return CS_SUCCESS; } /*====================================================================*/ static int parse_strings(u_char *p, u_char *q, int max, char *s, u_char *ofs, u_char *found) { int i, j, ns; if (p == q) return CS_BAD_TUPLE; ns = 0; j = 0; for (i = 0; i < max; i++) { if (*p == 0xff) break; ofs[i] = j; ns++; for (;;) { s[j++] = (*p == 0xff) ? '\0' : *p; if ((*p == '\0') || (*p == 0xff)) break; if (++p == q) return CS_BAD_TUPLE; } if ((*p == 0xff) || (++p == q)) break; } if (found) { *found = ns; return CS_SUCCESS; } else { return (ns == max) ? CS_SUCCESS : CS_BAD_TUPLE; } } /*====================================================================*/ static int parse_vers_1(tuple_t *tuple, cistpl_vers_1_t *vers_1) { u_char *p, *q; p = (u_char *)tuple->TupleData; q = p + tuple->TupleDataLen; vers_1->major = *p; p++; vers_1->minor = *p; p++; if (p >= q) return CS_BAD_TUPLE; return parse_strings(p, q, CISTPL_VERS_1_MAX_PROD_STRINGS, vers_1->str, vers_1->ofs, &vers_1->ns); } /*====================================================================*/ static int parse_altstr(tuple_t *tuple, cistpl_altstr_t *altstr) { u_char *p, *q; p = (u_char *)tuple->TupleData; q = p + tuple->TupleDataLen; return parse_strings(p, q, CISTPL_MAX_ALTSTR_STRINGS, altstr->str, altstr->ofs, &altstr->ns); } /*====================================================================*/ static int parse_jedec(tuple_t *tuple, cistpl_jedec_t *jedec) { u_char *p, *q; int nid; p = (u_char *)tuple->TupleData; q = p + tuple->TupleDataLen; for (nid = 0; nid < CISTPL_MAX_DEVICES; nid++) { if (p > q-2) break; jedec->id[nid].mfr = p[0]; jedec->id[nid].info = p[1]; p += 2; } jedec->nid = nid; return CS_SUCCESS; } /*====================================================================*/ static int parse_manfid(tuple_t *tuple, cistpl_manfid_t *m) { u_short *p; if (tuple->TupleDataLen < 4) return CS_BAD_TUPLE; p = (u_short *)tuple->TupleData; m->manf = le16_to_cpu(p[0]); m->card = le16_to_cpu(p[1]); return CS_SUCCESS; } /*====================================================================*/ static int parse_funcid(tuple_t *tuple, cistpl_funcid_t *f) { u_char *p; if (tuple->TupleDataLen < 2) return CS_BAD_TUPLE; p = (u_char *)tuple->TupleData; f->func = p[0]; f->sysinit = p[1]; return CS_SUCCESS; } /*====================================================================*/ static int parse_funce(tuple_t *tuple, cistpl_funce_t *f) { u_char *p; int i; if (tuple->TupleDataLen < 1) return CS_BAD_TUPLE; p = (u_char *)tuple->TupleData; f->type = p[0]; for (i = 1; i < tuple->TupleDataLen; i++) f->data[i-1] = p[i]; return CS_SUCCESS; } /*====================================================================*/ static int parse_config(tuple_t *tuple, cistpl_config_t *config) { int rasz, rmsz, i; u_char *p; p = (u_char *)tuple->TupleData; rasz = *p & 0x03; rmsz = (*p & 0x3c) >> 2; if (tuple->TupleDataLen < rasz+rmsz+4) return CS_BAD_TUPLE; config->last_idx = *(++p); p++; config->base = 0; for (i = 0; i <= rasz; i++) config->base += p[i] << (8*i); p += rasz+1; for (i = 0; i < 4; i++) config->rmask[i] = 0; for (i = 0; i <= rmsz; i++) config->rmask[i>>2] += p[i] << (8*(i%4)); config->subtuples = tuple->TupleDataLen - (rasz+rmsz+4); return CS_SUCCESS; } /*====================================================================== The following routines are all used to parse the nightmarish config table entries. ======================================================================*/ static u_char *parse_power(u_char *p, u_char *q, cistpl_power_t *pwr) { int i; u_int scale; if (p == q) return NULL; pwr->present = *p; pwr->flags = 0; p++; for (i = 0; i < 7; i++) if (pwr->present & (1<param[i] = POWER_CVT(*p); scale = POWER_SCALE(*p); while (*p & 0x80) { if (++p == q) return NULL; if ((*p & 0x7f) < 100) pwr->param[i] += (*p & 0x7f) * scale / 100; else if (*p == 0x7d) pwr->flags |= CISTPL_POWER_HIGHZ_OK; else if (*p == 0x7e) pwr->param[i] = 0; else if (*p == 0x7f) pwr->flags |= CISTPL_POWER_HIGHZ_REQ; else return NULL; } p++; } return p; } /*====================================================================*/ static u_char *parse_timing(u_char *p, u_char *q, cistpl_timing_t *timing) { u_char scale; if (p == q) return NULL; scale = *p; if ((scale & 3) != 3) { if (++p == q) return NULL; timing->wait = SPEED_CVT(*p); timing->waitscale = exponent[scale & 3]; } else timing->wait = 0; scale >>= 2; if ((scale & 7) != 7) { if (++p == q) return NULL; timing->ready = SPEED_CVT(*p); timing->rdyscale = exponent[scale & 7]; } else timing->ready = 0; scale >>= 3; if (scale != 7) { if (++p == q) return NULL; timing->reserved = SPEED_CVT(*p); timing->rsvscale = exponent[scale]; } else timing->reserved = 0; p++; return p; } /*====================================================================*/ static u_char *parse_io(u_char *p, u_char *q, cistpl_io_t *io) { int i, j, bsz, lsz; if (p == q) return NULL; io->flags = *p; if (!(*p & 0x80)) { io->nwin = 1; io->win[0].base = 0; io->win[0].len = (1 << (io->flags & CISTPL_IO_LINES_MASK)); return p+1; } if (++p == q) return NULL; io->nwin = (*p & 0x0f) + 1; bsz = (*p & 0x30) >> 4; if (bsz == 3) bsz++; lsz = (*p & 0xc0) >> 6; if (lsz == 3) lsz++; p++; for (i = 0; i < io->nwin; i++) { io->win[i].base = 0; io->win[i].len = 1; for (j = 0; j < bsz; j++, p++) { if (p == q) return NULL; io->win[i].base += *p << (j*8); } for (j = 0; j < lsz; j++, p++) { if (p == q) return NULL; io->win[i].len += *p << (j*8); } } return p; } /*====================================================================*/ static u_char *parse_mem(u_char *p, u_char *q, cistpl_mem_t *mem) { int i, j, asz, lsz, has_ha; u_int len, ca, ha; if (p == q) return NULL; mem->nwin = (*p & 0x07) + 1; lsz = (*p & 0x18) >> 3; asz = (*p & 0x60) >> 5; has_ha = (*p & 0x80); if (++p == q) return NULL; for (i = 0; i < mem->nwin; i++) { len = ca = ha = 0; for (j = 0; j < lsz; j++, p++) { if (p == q) return NULL; len += *p << (j*8); } for (j = 0; j < asz; j++, p++) { if (p == q) return NULL; ca += *p << (j*8); } if (has_ha) for (j = 0; j < asz; j++, p++) { if (p == q) return NULL; ha += *p << (j*8); } mem->win[i].len = len << 8; mem->win[i].card_addr = ca << 8; mem->win[i].host_addr = ha << 8; } return p; } /*====================================================================*/ static u_char *parse_irq(u_char *p, u_char *q, cistpl_irq_t *irq) { if (p == q) return NULL; irq->IRQInfo1 = *p; p++; if (irq->IRQInfo1 & IRQ_INFO2_VALID) { if (p+2 > q) return NULL; irq->IRQInfo2 = (p[1]<<8) + p[0]; p += 2; } return p; } /*====================================================================*/ static int parse_cftable_entry(tuple_t *tuple, cistpl_cftable_entry_t *entry) { u_char *p, *q, features; p = tuple->TupleData; q = p + tuple->TupleDataLen; entry->index = *p & 0x3f; entry->flags = 0; if (*p & 0x40) entry->flags |= CISTPL_CFTABLE_DEFAULT; if (*p & 0x80) { if (++p == q) return CS_BAD_TUPLE; if (*p & 0x10) entry->flags |= CISTPL_CFTABLE_BVDS; if (*p & 0x20) entry->flags |= CISTPL_CFTABLE_WP; if (*p & 0x40) entry->flags |= CISTPL_CFTABLE_RDYBSY; if (*p & 0x80) entry->flags |= CISTPL_CFTABLE_MWAIT; entry->interface = *p & 0x0f; } else entry->interface = 0; /* Process optional features */ if (++p == q) return CS_BAD_TUPLE; features = *p; p++; /* Power options */ if ((features & 3) > 0) { p = parse_power(p, q, &entry->vcc); if (p == NULL) return CS_BAD_TUPLE; } else entry->vcc.present = 0; if ((features & 3) > 1) { p = parse_power(p, q, &entry->vpp1); if (p == NULL) return CS_BAD_TUPLE; } else entry->vpp1.present = 0; if ((features & 3) > 2) { p = parse_power(p, q, &entry->vpp2); if (p == NULL) return CS_BAD_TUPLE; } else entry->vpp2.present = 0; /* Timing options */ if (features & 0x04) { p = parse_timing(p, q, &entry->timing); if (p == NULL) return CS_BAD_TUPLE; } else { entry->timing.wait = 0; entry->timing.ready = 0; entry->timing.reserved = 0; } /* I/O window options */ if (features & 0x08) { p = parse_io(p, q, &entry->io); if (p == NULL) return CS_BAD_TUPLE; } else entry->io.nwin = 0; /* Interrupt options */ if (features & 0x10) { p = parse_irq(p, q, &entry->irq); if (p == NULL) return CS_BAD_TUPLE; } else entry->irq.IRQInfo1 = 0; switch (features & 0x60) { case 0x00: entry->mem.nwin = 0; break; case 0x20: entry->mem.nwin = 1; entry->mem.win[0].len = le16_to_cpu(*(u_short *)p) << 8; entry->mem.win[0].card_addr = 0; entry->mem.win[0].host_addr = 0; p += 2; if (p > q) return CS_BAD_TUPLE; break; case 0x40: entry->mem.nwin = 1; entry->mem.win[0].len = le16_to_cpu(*(u_short *)p) << 8; entry->mem.win[0].card_addr = le16_to_cpu(*(u_short *)(p+2)) << 8; entry->mem.win[0].host_addr = 0; p += 4; if (p > q) return CS_BAD_TUPLE; break; case 0x60: p = parse_mem(p, q, &entry->mem); if (p == NULL) return CS_BAD_TUPLE; break; } /* Misc features */ if (features & 0x80) { if (p == q) return CS_BAD_TUPLE; entry->flags |= (*p << 8); while (*p & 0x80) if (++p == q) return CS_BAD_TUPLE; p++; } entry->subtuples = q-p; return CS_SUCCESS; } /*====================================================================*/ #ifdef CONFIG_CARDBUS static int parse_bar(tuple_t *tuple, cistpl_bar_t *bar) { u_char *p; if (tuple->TupleDataLen < 6) return CS_BAD_TUPLE; p = (u_char *)tuple->TupleData; bar->attr = *p; p += 2; bar->size = le32_to_cpu(*(u_int *)p); return CS_SUCCESS; } static int parse_config_cb(tuple_t *tuple, cistpl_config_t *config) { u_char *p; p = (u_char *)tuple->TupleData; if ((*p != 3) || (tuple->TupleDataLen < 6)) return CS_BAD_TUPLE; config->last_idx = *(++p); p++; config->base = le32_to_cpu(*(u_int *)p); config->subtuples = tuple->TupleDataLen - 6; return CS_SUCCESS; } static int parse_cftable_entry_cb(tuple_t *tuple, cistpl_cftable_entry_cb_t *entry) { u_char *p, *q, features; p = tuple->TupleData; q = p + tuple->TupleDataLen; entry->index = *p & 0x3f; entry->flags = 0; if (*p & 0x40) entry->flags |= CISTPL_CFTABLE_DEFAULT; /* Process optional features */ if (++p == q) return CS_BAD_TUPLE; features = *p; p++; /* Power options */ if ((features & 3) > 0) { p = parse_power(p, q, &entry->vcc); if (p == NULL) return CS_BAD_TUPLE; } else entry->vcc.present = 0; if ((features & 3) > 1) { p = parse_power(p, q, &entry->vpp1); if (p == NULL) return CS_BAD_TUPLE; } else entry->vpp1.present = 0; if ((features & 3) > 2) { p = parse_power(p, q, &entry->vpp2); if (p == NULL) return CS_BAD_TUPLE; } else entry->vpp2.present = 0; /* I/O window options */ if (features & 0x08) { if (p == q) return CS_BAD_TUPLE; entry->io = *p; p++; } else entry->io = 0; /* Interrupt options */ if (features & 0x10) { p = parse_irq(p, q, &entry->irq); if (p == NULL) return CS_BAD_TUPLE; } else entry->irq.IRQInfo1 = 0; if (features & 0x20) { if (p == q) return CS_BAD_TUPLE; entry->mem = *p; p++; } else entry->mem = 0; /* Misc features */ if (features & 0x80) { if (p == q) return CS_BAD_TUPLE; entry->flags |= (*p << 8); if (*p & 0x80) { if (++p == q) return CS_BAD_TUPLE; entry->flags |= (*p << 16); } while (*p & 0x80) if (++p == q) return CS_BAD_TUPLE; p++; } entry->subtuples = q-p; return CS_SUCCESS; } #endif /*====================================================================*/ static int parse_device_geo(tuple_t *tuple, cistpl_device_geo_t *geo) { u_char *p, *q; int n; p = (u_char *)tuple->TupleData; q = p + tuple->TupleDataLen; for (n = 0; n < CISTPL_MAX_DEVICES; n++) { if (p > q-6) break; geo->geo[n].buswidth = p[0]; geo->geo[n].erase_block = 1 << (p[1]-1); geo->geo[n].read_block = 1 << (p[2]-1); geo->geo[n].write_block = 1 << (p[3]-1); geo->geo[n].partition = 1 << (p[4]-1); geo->geo[n].interleave = 1 << (p[5]-1); p += 6; } geo->ngeo = n; return CS_SUCCESS; } /*====================================================================*/ static int parse_vers_2(tuple_t *tuple, cistpl_vers_2_t *v2) { u_char *p, *q; if (tuple->TupleDataLen < 10) return CS_BAD_TUPLE; p = tuple->TupleData; q = p + tuple->TupleDataLen; v2->vers = p[0]; v2->comply = p[1]; v2->dindex = le16_to_cpu(*(u_short *)(p+2)); v2->vspec8 = p[6]; v2->vspec9 = p[7]; v2->nhdr = p[8]; p += 9; return parse_strings(p, q, 2, v2->str, &v2->vendor, NULL); } /*====================================================================*/ static int parse_org(tuple_t *tuple, cistpl_org_t *org) { u_char *p, *q; int i; p = tuple->TupleData; q = p + tuple->TupleDataLen; if (p == q) return CS_BAD_TUPLE; org->data_org = *p; if (++p == q) return CS_BAD_TUPLE; for (i = 0; i < 30; i++) { org->desc[i] = *p; if (*p == '\0') break; if (++p == q) return CS_BAD_TUPLE; } return CS_SUCCESS; } /*====================================================================*/ int parse_tuple(client_handle_t handle, tuple_t *tuple, cisparse_t *parse) { int ret = CS_SUCCESS; if (tuple->TupleDataLen > tuple->TupleDataMax) return CS_BAD_TUPLE; switch (tuple->TupleCode) { case CISTPL_DEVICE: case CISTPL_DEVICE_A: ret = parse_device(tuple, &parse->device); break; #ifdef CONFIG_CARDBUS case CISTPL_BAR: ret = parse_bar(tuple, &parse->bar); break; case CISTPL_CONFIG_CB: ret = parse_config_cb(tuple, &parse->config); break; case CISTPL_CFTABLE_ENTRY_CB: ret = parse_cftable_entry_cb(tuple, &parse->cftable_entry_cb); break; #endif case CISTPL_CHECKSUM: ret = parse_checksum(tuple, &parse->checksum); break; case CISTPL_LONGLINK_A: case CISTPL_LONGLINK_C: ret = parse_longlink(tuple, &parse->longlink); break; case CISTPL_LONGLINK_MFC: ret = parse_longlink_mfc(tuple, &parse->longlink_mfc); break; case CISTPL_VERS_1: ret = parse_vers_1(tuple, &parse->version_1); break; case CISTPL_ALTSTR: ret = parse_altstr(tuple, &parse->altstr); break; case CISTPL_JEDEC_A: case CISTPL_JEDEC_C: ret = parse_jedec(tuple, &parse->jedec); break; case CISTPL_MANFID: ret = parse_manfid(tuple, &parse->manfid); break; case CISTPL_FUNCID: ret = parse_funcid(tuple, &parse->funcid); break; case CISTPL_FUNCE: ret = parse_funce(tuple, &parse->funce); break; case CISTPL_CONFIG: ret = parse_config(tuple, &parse->config); break; case CISTPL_CFTABLE_ENTRY: ret = parse_cftable_entry(tuple, &parse->cftable_entry); break; case CISTPL_DEVICE_GEO: case CISTPL_DEVICE_GEO_A: ret = parse_device_geo(tuple, &parse->device_geo); break; case CISTPL_VERS_2: ret = parse_vers_2(tuple, &parse->vers_2); break; case CISTPL_ORG: ret = parse_org(tuple, &parse->org); break; case CISTPL_NO_LINK: case CISTPL_LINKTARGET: ret = CS_SUCCESS; break; default: ret = CS_UNSUPPORTED_FUNCTION; break; } return ret; } /*====================================================================== This is used internally by Card Services to look up CIS stuff. ======================================================================*/ int read_tuple(client_handle_t handle, cisdata_t code, void *parse) { tuple_t tuple; cisdata_t buf[255]; int ret; tuple.DesiredTuple = code; tuple.Attributes = TUPLE_RETURN_COMMON; ret = CardServices(GetFirstTuple, handle, &tuple, NULL); if (ret != CS_SUCCESS) return ret; tuple.TupleData = buf; tuple.TupleOffset = 0; tuple.TupleDataMax = sizeof(buf); ret = CardServices(GetTupleData, handle, &tuple, NULL); if (ret != CS_SUCCESS) return ret; ret = CardServices(ParseTuple, handle, &tuple, parse); return ret; } /*====================================================================== This tries to determine if a card has a sensible CIS. It returns the number of tuples in the CIS, or 0 if the CIS looks bad. The checks include making sure several critical tuples are present and valid; seeing if the total number of tuples is reasonable; and looking for tuples that use reserved codes. ======================================================================*/ int validate_cis(client_handle_t handle, cisinfo_t *info) { tuple_t tuple; cisparse_t p; int ret, reserved, errors; if (CHECK_HANDLE(handle)) return CS_BAD_HANDLE; info->Chains = reserved = errors = 0; tuple.DesiredTuple = RETURN_FIRST_TUPLE; tuple.Attributes = TUPLE_RETURN_COMMON; ret = get_first_tuple(handle, &tuple); if (ret != CS_SUCCESS) return CS_SUCCESS; /* First tuple should be DEVICE */ if (tuple.TupleCode != CISTPL_DEVICE) errors++; /* All cards should have a MANFID tuple */ if (read_tuple(handle, CISTPL_MANFID, &p) != CS_SUCCESS) errors++; /* All cards should have either a VERS_1 or a VERS_2 tuple. But at worst, we'll accept a CFTABLE_ENTRY that parses. */ if ((read_tuple(handle, CISTPL_VERS_1, &p) != CS_SUCCESS) && (read_tuple(handle, CISTPL_VERS_2, &p) != CS_SUCCESS) && (read_tuple(handle, CISTPL_CFTABLE_ENTRY, &p) != CS_SUCCESS) && (read_tuple(handle, CISTPL_CFTABLE_ENTRY_CB, &p) != CS_SUCCESS)) errors++; if (errors > 1) return CS_SUCCESS; for (info->Chains = 1; info->Chains < MAX_TUPLES; info->Chains++) { ret = get_next_tuple(handle, &tuple); if (ret != CS_SUCCESS) break; if (((tuple.TupleCode > 0x23) && (tuple.TupleCode < 0x40)) || ((tuple.TupleCode > 0x47) && (tuple.TupleCode < 0x80)) || ((tuple.TupleCode > 0x90) && (tuple.TupleCode < 0xff))) reserved++; } if ((info->Chains == MAX_TUPLES) || (reserved > 5)) info->Chains = 0; return CS_SUCCESS; }