/* [xirc2ps_cs.c wk 03.11.99] (1.40 1999/11/18 00:06:03) * Xircom CreditCard Ethernet Adapter IIps driver * Xircom Realport 10/100 (RE-100) driver * * This driver supports various Xircom CreditCard Ethernet adapters * including the CE2, CE IIps, RE-10, CEM28, CEM33, CE33, CEM56, * CE3-100, CE3B, RE-100, REM10BT, and REM56G-100. * * Written originally by Werner Koch based on David Hinds' skeleton of the * PCMCIA driver. * * Copyright (c) 1997,1998 Werner Koch (dd9jn) * * This driver is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA * * * ALTERNATIVELY, this driver may be distributed under the terms of * the following license, in which case the provisions of this license * are required INSTEAD OF the GNU General Public License. (This clause * is necessary due to a potential bad interaction between the GPL and * the restrictions contained in a BSD-style copyright.) * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, and the entire permission notice in its entirety, * including the disclaimer of warranties. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote * products derived from this software without specific prior * written permission. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef MANFID_COMPAQ #define MANFID_COMPAQ 0x0138 #define MANFID_COMPAQ2 0x0183 /* is this correct? */ #endif #include /* Time in jiffies before concluding Tx hung */ #define TX_TIMEOUT ((400*HZ)/1000) /**************** * Some constants used to access the hardware */ /* Register offsets and value constans */ #define XIRCREG_CR 0 /* Command register (wr) */ enum xirc_cr { TransmitPacket = 0x01, SoftReset = 0x02, EnableIntr = 0x04, ForceIntr = 0x08, ClearTxFIFO = 0x10, ClearRxOvrun = 0x20, RestartTx = 0x40 }; #define XIRCREG_ESR 0 /* Ethernet status register (rd) */ enum xirc_esr { FullPktRcvd = 0x01, /* full packet in receive buffer */ PktRejected = 0x04, /* a packet has been rejected */ TxPktPend = 0x08, /* TX Packet Pending */ IncorPolarity = 0x10, MediaSelect = 0x20 /* set if TP, clear if AUI */ }; #define XIRCREG_PR 1 /* Page Register select */ #define XIRCREG_EDP 4 /* Ethernet Data Port Register */ #define XIRCREG_ISR 6 /* Ethernet Interrupt Status Register */ enum xirc_isr { TxBufOvr = 0x01, /* TX Buffer Overflow */ PktTxed = 0x02, /* Packet Transmitted */ MACIntr = 0x04, /* MAC Interrupt occured */ TxResGrant = 0x08, /* Tx Reservation Granted */ RxFullPkt = 0x20, /* Rx Full Packet */ RxPktRej = 0x40, /* Rx Packet Rejected */ ForcedIntr= 0x80 /* Forced Interrupt */ }; #define XIRCREG1_IMR0 12 /* Ethernet Interrupt Mask Register (on page 1)*/ #define XIRCREG1_IMR1 13 #define XIRCREG0_TSO 8 /* Transmit Space Open Register (on page 0)*/ #define XIRCREG0_TRS 10 /* Transmit reservation Size Register (page 0)*/ #define XIRCREG0_DO 12 /* Data Offset Register (page 0) (wr) */ #define XIRCREG0_RSR 12 /* Receive Status Register (page 0) (rd) */ enum xirc_rsr { PhyPkt = 0x01, /* set:physical packet, clear: multicast packet */ BrdcstPkt = 0x02, /* set if it is a broadcast packet */ PktTooLong = 0x04, /* set if packet length > 1518 */ AlignErr = 0x10, /* incorrect CRC and last octet not complete */ CRCErr = 0x20, /* incorrect CRC and last octet is complete */ PktRxOk = 0x80 /* received ok */ }; #define XIRCREG0_PTR 13 /* packets transmitted register (rd) */ #define XIRCREG0_RBC 14 /* receive byte count regsister (rd) */ #define XIRCREG1_ECR 14 /* ethernet configurationn register */ enum xirc_ecr { FullDuplex = 0x04, /* enable full duplex mode */ LongTPMode = 0x08, /* adjust for longer lengths of TP cable */ DisablePolCor = 0x10,/* disable auto polarity correction */ DisableLinkPulse = 0x20, /* disable link pulse generation */ DisableAutoTx = 0x40, /* disable auto-transmit */ }; #define XIRCREG2_RBS 8 /* receive buffer start register */ #define XIRCREG2_LED 10 /* LED Configuration register */ /* values for the leds: Bits 2-0 for led 1 * 0 disabled Bits 5-3 for led 2 * 1 collision * 2 noncollision * 3 link_detected * 4 incor_polarity * 5 jabber * 6 auto_assertion * 7 rx_tx_activity */ #define XIRCREG2_MSR 12 /* Mohawk specific register */ #define XIRCREG4_GPR0 8 /* General Purpose Register 0 */ #define XIRCREG4_GPR1 9 /* General Purpose Register 1 */ #define XIRCREG2_GPR2 13 /* General Purpose Register 2 (page2!)*/ #define XIRCREG4_BOV 10 /* Bonding Version Register */ #define XIRCREG4_LMA 12 /* Local Memory Address Register */ #define XIRCREG4_LMD 14 /* Local Memory Data Port */ /* MAC register can only by accessed with 8 bit operations */ #define XIRCREG40_CMD0 8 /* Command Register (wr) */ enum xirc_cmd { /* Commands */ Transmit = 0x01, EnableRecv = 0x04, DisableRecv = 0x08, Abort = 0x10, Online = 0x20, IntrAck = 0x40, Offline = 0x80 }; #define XIRCREG5_RHSA0 10 /* Rx Host Start Address */ #define XIRCREG40_RXST0 9 /* Receive Status Register */ #define XIRCREG40_TXST0 11 /* Transmit Status Register 0 */ #define XIRCREG40_TXST1 12 /* Transmit Status Register 10 */ #define XIRCREG40_RMASK0 13 /* Receive Mask Register */ #define XIRCREG40_TMASK0 14 /* Transmit Mask Register 0 */ #define XIRCREG40_TMASK1 15 /* Transmit Mask Register 0 */ #define XIRCREG42_SWC0 8 /* Software Configuration 0 */ #define XIRCREG42_SWC1 9 /* Software Configuration 1 */ #define XIRCREG42_BOC 10 /* Back-Off Configuration */ #define XIRCREG44_TDR0 8 /* Time Domain Reflectometry 0 */ #define XIRCREG44_TDR1 9 /* Time Domain Reflectometry 1 */ #define XIRCREG44_RXBC_LO 10 /* Rx Byte Count 0 (rd) */ #define XIRCREG44_RXBC_HI 11 /* Rx Byte Count 1 (rd) */ #define XIRCREG45_REV 15 /* Revision Register (rd) */ #define XIRCREG50_IA 8 /* Individual Address (8-13) */ static char *if_names[] = { "Auto", "10BaseT", "10Base2", "AUI", "100BaseT" }; /**************** * All the PCMCIA modules use PCMCIA_DEBUG to control debugging. If * you do not define PCMCIA_DEBUG at all, all the debug code will be * left out. If you compile with PCMCIA_DEBUG=0, the debug code will * be present but disabled -- but it can then be enabled for specific * modules at load time with a 'pc_debug=#' option to insmod. */ #ifdef PCMCIA_DEBUG static int pc_debug = PCMCIA_DEBUG; MODULE_PARM(pc_debug, "i"); #define DEBUG(n, args...) if (pc_debug>(n)) printk(KDBG_XIRC args) #else #define DEBUG(n, args...) #endif static char *version = "xirc2ps_cs.c 1.31 1998/12/09 19:32:55 (dd9jn+kvh)"; /* !--- CVS revision */ #define KDBG_XIRC KERN_DEBUG "xirc2ps_cs: " #define KERR_XIRC KERN_ERR "xirc2ps_cs: " #define KWRN_XIRC KERN_WARNING "xirc2ps_cs: " #define KNOT_XIRC KERN_NOTICE "xirc2ps_cs: " #define KINF_XIRC KERN_INFO "xirc2ps_cs: " /* card types */ #define XIR_UNKNOWN 0 /* unknown: not supported */ #define XIR_CE 1 /* (prodid 1) different hardware: not supported */ #define XIR_CE2 2 /* (prodid 2) */ #define XIR_CE3 3 /* (prodid 3) */ #define XIR_CEM 4 /* (prodid 1) different hardware: not supported */ #define XIR_CEM2 5 /* (prodid 2) */ #define XIR_CEM3 6 /* (prodid 3) */ #define XIR_CEM33 7 /* (prodid 4) */ #define XIR_CEM56M 8 /* (prodid 5) */ #define XIR_CEM56 9 /* (prodid 6) */ #define XIR_CM28 10 /* (prodid 3) modem only: not supported here */ #define XIR_CM33 11 /* (prodid 4) modem only: not supported here */ #define XIR_CM56 12 /* (prodid 5) modem only: not supported here */ #define XIR_CG 13 /* (prodid 1) GSM modem only: not supported */ #define XIR_CBE 14 /* (prodid 1) cardbus ethernet: not supported */ /*====================================================================*/ /* Parameters that can be set with 'insmod' */ #define INT_MODULE_PARM(n, v) static int n = v; MODULE_PARM(n, "i") static int irq_list[4] = { -1 }; MODULE_PARM(irq_list, "1-4i"); INT_MODULE_PARM(irq_mask, 0xdeb8); INT_MODULE_PARM(if_port, 0); INT_MODULE_PARM(full_duplex, 0); INT_MODULE_PARM(do_sound, 1); INT_MODULE_PARM(lockup_hack, 0); /* anti lockup hack */ /*====================================================================*/ /* We do not process more than these number of bytes during one * interrupt. (Of course we receive complete packets, so this is not * an exact value). * Something between 2000..22000; first value gives best interrupt latency, * the second enables the usage of the complete on-chip buffer. We use the * high value as the initial value. */ static unsigned maxrx_bytes = 22000; /* MII management prototypes */ static void mii_idle(ioaddr_t ioaddr); static void mii_putbit(ioaddr_t ioaddr, unsigned data); static int mii_getbit(ioaddr_t ioaddr); static void mii_wbits(ioaddr_t ioaddr, unsigned data, int len); static unsigned mii_rd(ioaddr_t ioaddr, u_char phyaddr, u_char phyreg); static void mii_wr(ioaddr_t ioaddr, u_char phyaddr, u_char phyreg, unsigned data, int len); /* * The event() function is this driver's Card Services event handler. * It will be called by Card Services when an appropriate card status * event is received. The config() and release() entry points are * used to configure or release a socket, in response to card insertion * and ejection events. They are invoked from the event handler. */ static int has_ce2_string(dev_link_t * link); static void xirc2ps_config(dev_link_t * link); static void xirc2ps_release(u_long arg); static int xirc2ps_event(event_t event, int priority, event_callback_args_t * args); /**************** * The attach() and detach() entry points are used to create and destroy * "instances" of the driver, where each instance represents everything * needed to manage one actual PCMCIA card. */ static dev_link_t *xirc2ps_attach(void); static void xirc2ps_detach(dev_link_t *); /**************** * You'll also need to prototype all the functions that will actually * be used to talk to your device. See 'pcmem_cs' for a good example * of a fully self-sufficient driver; the other drivers rely more or * less on other parts of the kernel. */ static void xirc2ps_interrupt(int irq, void *dev_id, struct pt_regs *regs); /* * The dev_info variable is the "key" that is used to match up this * device driver with appropriate cards, through the card configuration * database. */ static dev_info_t dev_info = "xirc2ps_cs"; /**************** * A linked list of "instances" of the device. Each actual * PCMCIA card corresponds to one device instance, and is described * by one dev_link_t structure (defined in ds.h). * * You may not want to use a linked list for this -- for example, the * memory card driver uses an array of dev_link_t pointers, where minor * device numbers are used to derive the corresponding array index. */ static dev_link_t *dev_list = NULL; /**************** * A dev_link_t structure has fields for most things that are needed * to keep track of a socket, but there will usually be some device * specific information that also needs to be kept track of. The * 'priv' pointer in a dev_link_t structure can be used to point to * a device-specific private data structure, like this. * * A driver needs to provide a dev_node_t structure for each device * on a card. In some cases, there is only one device per card (for * example, ethernet cards, modems). In other cases, there may be * many actual or logical devices (SCSI adapters, memory cards with * multiple partitions). The dev_node_t structures need to be kept * in a linked list starting at the 'dev' field of a dev_link_t * structure. We allocate them in the card's private data structure, * because they generally can't be allocated dynamically. */ typedef struct local_info_t { dev_link_t link; struct net_device dev; dev_node_t node; struct net_device_stats stats; int card_type; int probe_port; int silicon; /* silicon revision. 0=old CE2, 1=Scipper, 4=Mohawk */ int mohawk; /* a CE3 type card */ int dingo; /* a CEM56 type card */ int new_mii; /* has full 10baseT/100baseT MII */ int modem; /* is a multi function card (i.e with a modem) */ caddr_t dingo_ccr; /* only used for CEM56 cards */ unsigned last_ptr_value; /* last packets transmitted value */ const char *manf_str; } local_info_t; /**************** * Some more prototypes */ static int do_start_xmit(struct sk_buff *skb, struct net_device *dev); static void do_tx_timeout(struct net_device *dev); static struct net_device_stats *do_get_stats(struct net_device *dev); static void set_addresses(struct net_device *dev); static void set_multicast_list(struct net_device *dev); static int set_card_type(dev_link_t *link, const void *s); static int do_config(struct net_device *dev, struct ifmap *map); static int do_open(struct net_device *dev); static int do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); static void hardreset(struct net_device *dev); static void do_reset(struct net_device *dev, int full); static int init_mii(struct net_device *dev); static void do_powerdown(struct net_device *dev); static int do_stop(struct net_device *dev); /*=============== Helper functions =========================*/ static void flush_stale_links(void) { dev_link_t *link, *next; for (link = dev_list; link; link = next) { next = link->next; if (link->state & DEV_STALE_LINK) xirc2ps_detach(link); } } static void cs_error(client_handle_t handle, int func, int ret) { error_info_t err = { func, ret }; CardServices(ReportError, handle, &err); } static int get_tuple_data(int fn, client_handle_t handle, tuple_t *tuple) { int err; if ((err=CardServices(fn, handle, tuple))) return err; return CardServices(GetTupleData, handle, tuple); } static int get_tuple(int fn, client_handle_t handle, tuple_t *tuple, cisparse_t *parse) { int err; if ((err=get_tuple_data(fn, handle, tuple))) return err; return CardServices(ParseTuple, handle, tuple, parse); } #define first_tuple(a, b, c) get_tuple(GetFirstTuple, a, b, c) #define next_tuple(a, b, c) get_tuple(GetNextTuple, a, b, c) #define SelectPage(pgnr) outb((pgnr), ioaddr + XIRCREG_PR) #define GetByte(reg) ((unsigned)inb(ioaddr + (reg))) #define GetWord(reg) ((unsigned)inw(ioaddr + (reg))) #define PutByte(reg,value) outb((value), ioaddr+(reg)) #define PutWord(reg,value) outw((value), ioaddr+(reg)) static void busy_loop(u_long len) { if (in_interrupt()) { u_long timeout = jiffies + len; u_long flags; save_flags(flags); sti(); while (timeout >= jiffies) ; restore_flags(flags); } else { __set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(len); } } /*====== Functions used for debugging =================================*/ #if defined(PCMCIA_DEBUG) && 0 /* reading regs may change system status */ static void PrintRegisters(struct net_device *dev) { ioaddr_t ioaddr = dev->base_addr; if (pc_debug > 1) { int i, page; printk(KDBG_XIRC "Register common: "); for (i = 0; i < 8; i++) printk(" %2.2x", GetByte(i)); printk("\n"); for (page = 0; page <= 8; page++) { printk(KDBG_XIRC "Register page %2x: ", page); SelectPage(page); for (i = 8; i < 16; i++) printk(" %2.2x", GetByte(i)); printk("\n"); } for (page=0x40 ; page <= 0x5f; page++) { if (page == 0x43 || (page >= 0x46 && page <= 0x4f) || (page >= 0x51 && page <=0x5e)) continue; printk(KDBG_XIRC "Register page %2x: ", page); SelectPage(page); for (i = 8; i < 16; i++) printk(" %2.2x", GetByte(i)); printk("\n"); } } } #endif /* PCMCIA_DEBUG */ /*============== MII Management functions ===============*/ /**************** * Turn around for read */ static void mii_idle(ioaddr_t ioaddr) { PutByte(XIRCREG2_GPR2, 0x04|0); /* drive MDCK low */ udelay(1); PutByte(XIRCREG2_GPR2, 0x04|1); /* and drive MDCK high */ udelay(1); } /**************** * Write a bit to MDI/O */ static void mii_putbit(ioaddr_t ioaddr, unsigned data) { #if 1 if (data) { PutByte(XIRCREG2_GPR2, 0x0c|2|0); /* set MDIO */ udelay(1); PutByte(XIRCREG2_GPR2, 0x0c|2|1); /* and drive MDCK high */ udelay(1); } else { PutByte(XIRCREG2_GPR2, 0x0c|0|0); /* clear MDIO */ udelay(1); PutByte(XIRCREG2_GPR2, 0x0c|0|1); /* and drive MDCK high */ udelay(1); } #else if (data) { PutWord(XIRCREG2_GPR2-1, 0x0e0e); udelay(1); PutWord(XIRCREG2_GPR2-1, 0x0f0f); udelay(1); } else { PutWord(XIRCREG2_GPR2-1, 0x0c0c); udelay(1); PutWord(XIRCREG2_GPR2-1, 0x0d0d); udelay(1); } #endif } /**************** * Get a bit from MDI/O */ static int mii_getbit(ioaddr_t ioaddr) { unsigned d; PutByte(XIRCREG2_GPR2, 4|0); /* drive MDCK low */ udelay(1); d = GetByte(XIRCREG2_GPR2); /* read MDIO */ PutByte(XIRCREG2_GPR2, 4|1); /* drive MDCK high again */ udelay(1); return d & 0x20; /* read MDIO */ } static void mii_wbits(ioaddr_t ioaddr, unsigned data, int len) { unsigned m = 1 << (len-1); for (; m; m >>= 1) mii_putbit(ioaddr, data & m); } static unsigned mii_rd(ioaddr_t ioaddr, u_char phyaddr, u_char phyreg) { int i; unsigned data=0, m; SelectPage(2); for (i=0; i < 32; i++) /* 32 bit preamble */ mii_putbit(ioaddr, 1); mii_wbits(ioaddr, 0x06, 4); /* Start and opcode for read */ mii_wbits(ioaddr, phyaddr, 5); /* PHY address to be accessed */ mii_wbits(ioaddr, phyreg, 5); /* PHY register to read */ mii_idle(ioaddr); /* turn around */ mii_getbit(ioaddr); for (m = 1<<15; m; m >>= 1) if (mii_getbit(ioaddr)) data |= m; mii_idle(ioaddr); return data; } static void mii_wr(ioaddr_t ioaddr, u_char phyaddr, u_char phyreg, unsigned data, int len) { int i; SelectPage(2); for (i=0; i < 32; i++) /* 32 bit preamble */ mii_putbit(ioaddr, 1); mii_wbits(ioaddr, 0x05, 4); /* Start and opcode for write */ mii_wbits(ioaddr, phyaddr, 5); /* PHY address to be accessed */ mii_wbits(ioaddr, phyreg, 5); /* PHY Register to write */ mii_putbit(ioaddr, 1); /* turn around */ mii_putbit(ioaddr, 0); mii_wbits(ioaddr, data, len); /* And write the data */ mii_idle(ioaddr); } /*============= Main bulk of functions =========================*/ /**************** * xirc2ps_attach() creates an "instance" of the driver, allocating * local data structures for one device. The device is registered * with Card Services. * * The dev_link structure is initialized, but we don't actually * configure the card at this point -- we wait until we receive a * card insertion event. */ static dev_link_t * xirc2ps_attach(void) { client_reg_t client_reg; dev_link_t *link; struct net_device *dev; local_info_t *local; int err; DEBUG(0, "attach()\n"); flush_stale_links(); /* Allocate the device structure */ local = kmalloc(sizeof(*local), GFP_KERNEL); if (!local) return NULL; memset(local, 0, sizeof(*local)); link = &local->link; dev = &local->dev; link->priv = dev->priv = local; link->release.function = &xirc2ps_release; link->release.data = (u_long) link; /* General socket configuration */ link->conf.Attributes = CONF_ENABLE_IRQ; link->conf.Vcc = 50; link->conf.IntType = INT_MEMORY_AND_IO; link->conf.ConfigIndex = 1; link->conf.Present = PRESENT_OPTION; link->irq.Handler = xirc2ps_interrupt; link->irq.Instance = dev; /* Fill in card specific entries */ dev->hard_start_xmit = &do_start_xmit; dev->set_config = &do_config; dev->get_stats = &do_get_stats; dev->do_ioctl = &do_ioctl; dev->set_multicast_list = &set_multicast_list; ether_setup(dev); init_dev_name(dev, local->node); dev->open = &do_open; dev->stop = &do_stop; #ifdef HAVE_NETIF_QUEUE dev->tx_timeout = do_tx_timeout; dev->watchdog_timeo = TX_TIMEOUT; #endif /* Register with Card Services */ link->next = dev_list; dev_list = link; client_reg.dev_info = &dev_info; client_reg.Attributes = INFO_IO_CLIENT | INFO_CARD_SHARE; client_reg.EventMask = CS_EVENT_CARD_INSERTION | CS_EVENT_CARD_REMOVAL | CS_EVENT_RESET_PHYSICAL | CS_EVENT_CARD_RESET | CS_EVENT_PM_SUSPEND | CS_EVENT_PM_RESUME; client_reg.event_handler = &xirc2ps_event; client_reg.Version = 0x0210; client_reg.event_callback_args.client_data = link; if ((err = CardServices(RegisterClient, &link->handle, &client_reg))) { cs_error(link->handle, RegisterClient, err); xirc2ps_detach(link); return NULL; } return link; } /* xirc2ps_attach */ /**************** * This deletes a driver "instance". The device is de-registered * with Card Services. If it has been released, all local data * structures are freed. Otherwise, the structures will be freed * when the device is released. */ static void xirc2ps_detach(dev_link_t * link) { local_info_t *local = link->priv; dev_link_t **linkp; DEBUG(0, "detach(0x%p)\n", link); /* Locate device structure */ for (linkp = &dev_list; *linkp; linkp = &(*linkp)->next) if (*linkp == link) break; if (!*linkp) { DEBUG(0, "detach(0x%p): dev_link lost\n", link); return; } /* * If the device is currently configured and active, we won't * actually delete it yet. Instead, it is marked so that when * the release() function is called, that will trigger a proper * detach(). */ del_timer(&link->release); if (link->state & DEV_CONFIG) { DEBUG(0, "detach postponed, '%s' still locked\n", link->dev->dev_name); link->state |= DEV_STALE_LINK; return; } /* Break the link with Card Services */ if (link->handle) CardServices(DeregisterClient, link->handle); /* Unlink device structure, free it */ *linkp = link->next; if (link->dev) unregister_netdev(&local->dev); kfree(local); } /* xirc2ps_detach */ /**************** * Detect the type of the card. s is the buffer with the data of tuple 0x20 * Returns: 0 := not supported * mediaid=11 and prodid=47 * Media-Id bits: * Ethernet 0x01 * Tokenring 0x02 * Arcnet 0x04 * Wireless 0x08 * Modem 0x10 * GSM only 0x20 * Prod-Id bits: * Pocket 0x10 * External 0x20 * Creditcard 0x40 * Cardbus 0x80 * */ static int set_card_type(dev_link_t *link, const void *s) { local_info_t *local = link->priv; #ifdef PCMCIA_DEBUG unsigned cisrev = ((const unsigned char *)s)[2]; #endif unsigned mediaid= ((const unsigned char *)s)[3]; unsigned prodid = ((const unsigned char *)s)[4]; DEBUG(0, "cisrev=%02x mediaid=%02x prodid=%02x\n", cisrev, mediaid, prodid); local->mohawk = 0; local->dingo = 0; local->modem = 0; local->card_type = XIR_UNKNOWN; if (!(prodid & 0x40)) { printk(KNOT_XIRC "Ooops: Not a creditcard\n"); return 0; } if (!(mediaid & 0x01)) { printk(KNOT_XIRC "Not an Ethernet card\n"); return 0; } if (mediaid & 0x10) { local->modem = 1; switch(prodid & 15) { case 1: local->card_type = XIR_CEM ; break; case 2: local->card_type = XIR_CEM2 ; break; case 3: local->card_type = XIR_CEM3 ; break; case 4: local->card_type = XIR_CEM33 ; break; case 5: local->card_type = XIR_CEM56M; local->mohawk = 1; break; case 6: case 7: /* 7 is the RealPort 10/56 */ local->card_type = XIR_CEM56 ; local->mohawk = 1; local->dingo = 1; break; } } else { switch(prodid & 15) { case 1: local->card_type = has_ce2_string(link)? XIR_CE2 : XIR_CE ; break; case 2: local->card_type = XIR_CE2; break; case 3: local->card_type = XIR_CE3; local->mohawk = 1; break; } } if (local->card_type == XIR_CE || local->card_type == XIR_CEM) { printk(KNOT_XIRC "Sorry, this is an old CE card\n"); return 0; } if (local->card_type == XIR_UNKNOWN) printk(KNOT_XIRC "unknown card (mediaid=%02x prodid=%02x)\n", mediaid, prodid); return 1; } /**************** * There are some CE2 cards out which claim to be a CE card. * This function looks for a "CE2" in the 3rd version field. * Returns: true if this is a CE2 */ static int has_ce2_string(dev_link_t * link) { client_handle_t handle = link->handle; tuple_t tuple; cisparse_t parse; u_char buf[256]; tuple.Attributes = 0; tuple.TupleData = buf; tuple.TupleDataMax = 254; tuple.TupleOffset = 0; tuple.DesiredTuple = CISTPL_VERS_1; if (!first_tuple(handle, &tuple, &parse) && parse.version_1.ns > 2) { if (strstr(parse.version_1.str + parse.version_1.ofs[2], "CE2")) return 1; } return 0; } /**************** * xirc2ps_config() is scheduled to run after a CARD_INSERTION event * is received, to configure the PCMCIA socket, and to make the * ethernet device available to the system. */ static void xirc2ps_config(dev_link_t * link) { client_handle_t handle = link->handle; local_info_t *local = link->priv; struct net_device *dev = &local->dev; tuple_t tuple; cisparse_t parse; ioaddr_t ioaddr; int err, i; u_char buf[64]; cistpl_lan_node_id_t *node_id = (cistpl_lan_node_id_t*)parse.funce.data; cistpl_cftable_entry_t *cf = &parse.cftable_entry; local->dingo_ccr = 0; DEBUG(0, "config(0x%p)\n", link); /* * This reads the card's CONFIG tuple to find its configuration * registers. */ tuple.Attributes = 0; tuple.TupleData = buf; tuple.TupleDataMax = 64; tuple.TupleOffset = 0; /* Is this a valid card */ tuple.DesiredTuple = CISTPL_MANFID; if ((err=first_tuple(handle, &tuple, &parse))) { printk(KNOT_XIRC "manfid not found in CIS\n"); goto failure; } switch(parse.manfid.manf) { case MANFID_XIRCOM: local->manf_str = "Xircom"; break; case MANFID_ACCTON: local->manf_str = "Accton"; break; case MANFID_COMPAQ: case MANFID_COMPAQ2: local->manf_str = "Compaq"; break; case MANFID_INTEL: local->manf_str = "Intel"; break; case MANFID_TOSHIBA: local->manf_str = "Toshiba"; break; default: printk(KNOT_XIRC "Unknown Card Manufacturer ID: 0x%04x\n", (unsigned)parse.manfid.manf); goto failure; } DEBUG(0, "found %s card\n", local->manf_str); if (!set_card_type(link, buf)) { printk(KNOT_XIRC "this card is not supported\n"); goto failure; } /* get configuration stuff */ tuple.DesiredTuple = CISTPL_CONFIG; if ((err=first_tuple(handle, &tuple, &parse))) goto cis_error; link->conf.ConfigBase = parse.config.base; link->conf.Present = parse.config.rmask[0]; /* get the ethernet address from the CIS */ tuple.DesiredTuple = CISTPL_FUNCE; for (err = first_tuple(handle, &tuple, &parse); !err; err = next_tuple(handle, &tuple, &parse)) { /* Once I saw two CISTPL_FUNCE_LAN_NODE_ID entries: * the first one with a length of zero the second correct - * so I skip all entries with length 0 */ if (parse.funce.type == CISTPL_FUNCE_LAN_NODE_ID && ((cistpl_lan_node_id_t *)parse.funce.data)->nb) break; } if (err) { /* not found: try to get the node-id from tuple 0x89 */ tuple.DesiredTuple = 0x89; /* data layout looks like tuple 0x22 */ if (!(err = get_tuple_data(GetFirstTuple, handle, &tuple))) { if (tuple.TupleDataLen == 8 && *buf == CISTPL_FUNCE_LAN_NODE_ID) memcpy(&parse, buf, 8); else err = -1; } } if (err) { /* another try (James Lehmer's CE2 version 4.1)*/ tuple.DesiredTuple = CISTPL_FUNCE; for (err = first_tuple(handle, &tuple, &parse); !err; err = next_tuple(handle, &tuple, &parse)) { if (parse.funce.type == 0x02 && parse.funce.data[0] == 1 && parse.funce.data[1] == 6 && tuple.TupleDataLen == 13) { buf[1] = 4; memcpy(&parse, buf+1, 8); break; } } } if (err) { printk(KNOT_XIRC "node-id not found in CIS\n"); goto failure; } node_id = (cistpl_lan_node_id_t *)parse.funce.data; if (node_id->nb != 6) { printk(KNOT_XIRC "malformed node-id in CIS\n"); goto failure; } for (i=0; i < 6; i++) dev->dev_addr[i] = node_id->id[i]; /* Configure card */ link->state |= DEV_CONFIG; link->io.IOAddrLines =10; link->io.Attributes1 = IO_DATA_PATH_WIDTH_16; link->irq.Attributes = IRQ_HANDLE_PRESENT; link->irq.IRQInfo1 = IRQ_INFO2_VALID | IRQ_LEVEL_ID; if (irq_list[0] == -1) link->irq.IRQInfo2 = irq_mask; else { for (i = 0; i < 4; i++) link->irq.IRQInfo2 |= 1 << irq_list[i]; } if (local->modem) { int pass; if (do_sound) { link->conf.Attributes |= CONF_ENABLE_SPKR; link->conf.Status |= CCSR_AUDIO_ENA; } link->irq.Attributes |= IRQ_TYPE_DYNAMIC_SHARING|IRQ_FIRST_SHARED ; link->io.NumPorts2 = 8; link->io.Attributes2 = IO_DATA_PATH_WIDTH_8; if (local->dingo) { /* Take the Modem IO port from the CIS and scan for a free * Ethernet port */ link->io.NumPorts1 = 16; /* no Mako stuff anymore */ tuple.DesiredTuple = CISTPL_CFTABLE_ENTRY; for (err = first_tuple(handle, &tuple, &parse); !err; err = next_tuple(handle, &tuple, &parse)) { if (cf->io.nwin > 0 && (cf->io.win[0].base & 0xf) == 8) { for (ioaddr = 0x300; ioaddr < 0x400; ioaddr += 0x10) { link->conf.ConfigIndex = cf->index ; link->io.BasePort2 = cf->io.win[0].base; link->io.BasePort1 = ioaddr; if (!(err=CardServices(RequestIO, link->handle, &link->io))) goto port_found; } } } } else { link->io.NumPorts1 = 18; /* We do 2 passes here: The first one uses the regular mapping and * the second tries again, thereby considering that the 32 ports are * mirrored every 32 bytes. Actually we use a mirrored port for * the Mako if (on the first pass) the COR bit 5 is set. */ for (pass=0; pass < 2; pass++) { tuple.DesiredTuple = CISTPL_CFTABLE_ENTRY; for (err = first_tuple(handle, &tuple, &parse); !err; err = next_tuple(handle, &tuple, &parse)){ if (cf->io.nwin > 0 && (cf->io.win[0].base & 0xf) == 8){ link->conf.ConfigIndex = cf->index ; link->io.BasePort2 = cf->io.win[0].base; link->io.BasePort1 = link->io.BasePort2 + (pass ? (cf->index & 0x20 ? -24:8) : (cf->index & 0x20 ? 8:-24)); if (!(err=CardServices(RequestIO, link->handle, &link->io))) goto port_found; } } } /* if special option: * try to configure as Ethernet only. * .... */ } printk(KNOT_XIRC "no ports available\n"); } else { link->irq.Attributes |= IRQ_TYPE_EXCLUSIVE; link->io.NumPorts1 = 16; for (ioaddr = 0x300; ioaddr < 0x400; ioaddr += 0x10) { link->io.BasePort1 = ioaddr; if (!(err=CardServices(RequestIO, link->handle, &link->io))) goto port_found; } link->io.BasePort1 = 0; /* let CS decide */ if ((err=CardServices(RequestIO, link->handle, &link->io))) { cs_error(link->handle, RequestIO, err); goto config_error; } } port_found: if (err) goto config_error; /**************** * Now allocate an interrupt line. Note that this does not * actually assign a handler to the interrupt. */ if ((err=CardServices(RequestIRQ, link->handle, &link->irq))) { cs_error(link->handle, RequestIRQ, err); goto config_error; } /**************** * This actually configures the PCMCIA socket -- setting up * the I/O windows and the interrupt mapping. */ if ((err=CardServices(RequestConfiguration, link->handle, &link->conf))) { cs_error(link->handle, RequestConfiguration, err); goto config_error; } if (local->dingo) { conf_reg_t reg; win_req_t req; memreq_t mem; /* Reset the modem's BAR to the correct value * This is necessary because in the RequestConfiguration call, * the base address of the ethernet port (BasePort1) is written * to the BAR registers of the modem. */ reg.Action = CS_WRITE; reg.Offset = CISREG_IOBASE_0; reg.Value = link->io.BasePort2 & 0xff; if ((err = CardServices(AccessConfigurationRegister, link->handle, ®))) { cs_error(link->handle, AccessConfigurationRegister, err); goto config_error; } reg.Action = CS_WRITE; reg.Offset = CISREG_IOBASE_1; reg.Value = (link->io.BasePort2 >> 8) & 0xff; if ((err = CardServices(AccessConfigurationRegister, link->handle, ®))) { cs_error(link->handle, AccessConfigurationRegister, err); goto config_error; } /* There is no config entry for the Ethernet part which * is at 0x0800. So we allocate a window into the attribute * memory and write direct to the CIS registers */ req.Attributes = WIN_DATA_WIDTH_8|WIN_MEMORY_TYPE_AM|WIN_ENABLE; req.Base = req.Size = 0; req.AccessSpeed = 0; link->win = (window_handle_t)link->handle; if ((err = CardServices(RequestWindow, &link->win, &req))) { cs_error(link->handle, RequestWindow, err); goto config_error; } local->dingo_ccr = ioremap(req.Base,0x1000) + 0x0800; mem.CardOffset = 0x0; mem.Page = 0; if ((err = CardServices(MapMemPage, link->win, &mem))) { cs_error(link->handle, MapMemPage, err); goto config_error; } /* Setup the CCRs; there are no infos in the CIS about the Ethernet * part. */ writeb(0x47, local->dingo_ccr + CISREG_COR); ioaddr = link->io.BasePort1; writeb(ioaddr & 0xff , local->dingo_ccr + CISREG_IOBASE_0); writeb((ioaddr >> 8)&0xff , local->dingo_ccr + CISREG_IOBASE_1); #if 0 { u_char tmp; printk(KERN_INFO "ECOR:"); for (i=0; i < 7; i++) { tmp = readb(local->dingo_ccr + i*2); printk(" %02x", tmp); } printk("\n"); printk(KERN_INFO "DCOR:"); for (i=0; i < 4; i++) { tmp = readb(local->dingo_ccr + 0x20 + i*2); printk(" %02x", tmp); } printk("\n"); printk(KERN_INFO "SCOR:"); for (i=0; i < 10; i++) { tmp = readb(local->dingo_ccr + 0x40 + i*2); printk(" %02x", tmp); } printk("\n"); } #endif writeb(0x01, local->dingo_ccr + 0x20); writeb(0x0c, local->dingo_ccr + 0x22); writeb(0x00, local->dingo_ccr + 0x24); writeb(0x00, local->dingo_ccr + 0x26); writeb(0x00, local->dingo_ccr + 0x28); } /* The if_port symbol can be set when the module is loaded */ local->probe_port=0; if (!if_port) { local->probe_port = dev->if_port = 1; } else if ((if_port >= 1 && if_port <= 2) || (local->mohawk && if_port==4)) dev->if_port = if_port; else printk(KNOT_XIRC "invalid if_port requested\n"); /* we can now register the device with the net subsystem */ dev->irq = link->irq.AssignedIRQ; dev->base_addr = link->io.BasePort1; if ((err=register_netdev(dev))) { printk(KNOT_XIRC "register_netdev() failed\n"); goto config_error; } copy_dev_name(local->node, dev); link->dev = &local->node; link->state &= ~DEV_CONFIG_PENDING; if (local->dingo) do_reset(dev, 1); /* a kludge to make the cem56 work */ /* give some infos about the hardware */ printk(KERN_INFO "%s: %s: port %#3lx, irq %d, hwaddr", dev->name, local->manf_str,(u_long)dev->base_addr, (int)dev->irq); for (i = 0; i < 6; i++) printk("%c%02X", i?':':' ', dev->dev_addr[i]); printk("\n"); return; config_error: link->state &= ~DEV_CONFIG_PENDING; xirc2ps_release((u_long)link); return; cis_error: printk(KNOT_XIRC "unable to parse CIS\n"); failure: link->state &= ~DEV_CONFIG_PENDING; } /* xirc2ps_config */ /**************** * After a card is removed, xirc2ps_release() will unregister the net * device, and release the PCMCIA configuration. If the device is * still open, this will be postponed until it is closed. */ static void xirc2ps_release(u_long arg) { dev_link_t *link = (dev_link_t *) arg; local_info_t *local = link->priv; struct net_device *dev = &local->dev; DEBUG(0, "release(0x%p)\n", link); /* * If the device is currently in use, we won't release until it * is actually closed. */ if (link->open) { DEBUG(0, "release postponed, '%s' " "still open\n", link->dev->dev_name); link->state |= DEV_STALE_CONFIG; return; } if (link->win) { local_info_t *local = dev->priv; if (local->dingo) iounmap(local->dingo_ccr - 0x0800); CardServices(ReleaseWindow, link->win); } CardServices(ReleaseConfiguration, link->handle); CardServices(ReleaseIO, link->handle, &link->io); CardServices(ReleaseIRQ, link->handle, &link->irq); link->state &= ~DEV_CONFIG; } /* xirc2ps_release */ /*====================================================================*/ /**************** * The card status event handler. Mostly, this schedules other * stuff to run after an event is received. A CARD_REMOVAL event * also sets some flags to discourage the net drivers from trying * to talk to the card any more. * * When a CARD_REMOVAL event is received, we immediately set a flag * to block future accesses to this device. All the functions that * actually access the device should check this flag to make sure * the card is still present. */ static int xirc2ps_event(event_t event, int priority, event_callback_args_t * args) { dev_link_t *link = args->client_data; local_info_t *lp = link->priv; struct net_device *dev = &lp->dev; DEBUG(0, "event(%d)\n", (int)event); switch (event) { case CS_EVENT_REGISTRATION_COMPLETE: DEBUG(0, "registration complete\n"); break; case CS_EVENT_CARD_REMOVAL: link->state &= ~DEV_PRESENT; if (link->state & DEV_CONFIG) { netif_device_detach(dev); mod_timer(&link->release, jiffies + HZ/20); } break; case CS_EVENT_CARD_INSERTION: link->state |= DEV_PRESENT | DEV_CONFIG_PENDING; xirc2ps_config(link); break; case CS_EVENT_PM_SUSPEND: link->state |= DEV_SUSPEND; /* Fall through... */ case CS_EVENT_RESET_PHYSICAL: if (link->state & DEV_CONFIG) { if (link->open) { netif_device_detach(dev); do_powerdown(dev); } CardServices(ReleaseConfiguration, link->handle); } break; case CS_EVENT_PM_RESUME: link->state &= ~DEV_SUSPEND; /* Fall through... */ case CS_EVENT_CARD_RESET: if (link->state & DEV_CONFIG) { CardServices(RequestConfiguration, link->handle, &link->conf); if (link->open) { do_reset(dev,1); netif_device_attach(dev); } } break; } return 0; } /* xirc2ps_event */ /*====================================================================*/ /**************** * This is the Interrupt service route. */ static void xirc2ps_interrupt(int irq, void *dev_id, struct pt_regs *regs) { struct net_device *dev = (struct net_device *)dev_id; local_info_t *lp = dev->priv; ioaddr_t ioaddr; u_char saved_page; unsigned bytes_rcvd; unsigned int_status, eth_status, rx_status, tx_status; unsigned rsr, pktlen; ulong start_ticks = jiffies; /* fixme: jiffies rollover every 497 days * is this something to worry about? * -- on a laptop? */ if (!netif_device_present(dev)) return; ioaddr = dev->base_addr; if (lp->mohawk) { /* must disable the interrupt */ PutByte(XIRCREG_CR, 0); } DEBUG(6, "%s: interrupt %d at %#x.\n", dev->name, irq, ioaddr); saved_page = GetByte(XIRCREG_PR); /* Read the ISR to see whats the cause for the interrupt. * This also clears the interrupt flags on CE2 cards */ int_status = GetByte(XIRCREG_ISR); bytes_rcvd = 0; loop_entry: if (int_status == 0xff) { /* card may be ejected */ DEBUG(3, "%s: interrupt %d for dead card\n", dev->name, irq); goto leave; } eth_status = GetByte(XIRCREG_ESR); SelectPage(0x40); rx_status = GetByte(XIRCREG40_RXST0); PutByte(XIRCREG40_RXST0, (~rx_status & 0xff)); tx_status = GetByte(XIRCREG40_TXST0); tx_status |= GetByte(XIRCREG40_TXST1) << 8; PutByte(XIRCREG40_TXST0, 0); PutByte(XIRCREG40_TXST1, 0); DEBUG(3, "%s: ISR=%#2.2x ESR=%#2.2x RSR=%#2.2x TSR=%#4.4x\n", dev->name, int_status, eth_status, rx_status, tx_status); /***** receive section ******/ SelectPage(0); while (eth_status & FullPktRcvd) { rsr = GetByte(XIRCREG0_RSR); if (bytes_rcvd > maxrx_bytes && (rsr & PktRxOk)) { /* too many bytes received during this int, drop the rest of the * packets */ lp->stats.rx_dropped++; DEBUG(2, "%s: RX drop, too much done\n", dev->name); } else if (rsr & PktRxOk) { struct sk_buff *skb; pktlen = GetWord(XIRCREG0_RBC); bytes_rcvd += pktlen; DEBUG(5, "rsr=%#02x packet_length=%u\n", rsr, pktlen); skb = dev_alloc_skb(pktlen+3); /* 1 extra so we can use insw */ if (!skb) { printk(KNOT_XIRC "low memory, packet dropped (size=%u)\n", pktlen); lp->stats.rx_dropped++; } else { /* okay get the packet */ skb_reserve(skb, 2); if (lp->silicon == 0 ) { /* work around a hardware bug */ unsigned rhsa; /* receive start address */ SelectPage(5); rhsa = GetWord(XIRCREG5_RHSA0); SelectPage(0); rhsa += 3; /* skip control infos */ if (rhsa >= 0x8000) rhsa = 0; if (rhsa + pktlen > 0x8000) { unsigned i; u_char *buf = skb_put(skb, pktlen); for (i=0; i < pktlen ; i++, rhsa++) { buf[i] = GetByte(XIRCREG_EDP); if (rhsa == 0x8000) { rhsa = 0; i--; } } } else { insw_ns(ioaddr+XIRCREG_EDP, skb_put(skb, pktlen), (pktlen+1)>>1); } } #if 0 else if (lp->mohawk) { /* To use this 32 bit access we should use * a manual optimized loop * Also the words are swapped, we can get more * performance by using 32 bit access and swapping * the words in a register. Will need this for cardbus * * Note: don't forget to change the ALLOC_SKB to .. +3 */ unsigned i; u_long *p = skb_put(skb, pktlen); register u_long a; ioaddr_t edpreg = ioaddr+XIRCREG_EDP-2; for (i=0; i < len ; i += 4, p++) { a = inl(edpreg); __asm__("rorl $16,%0\n\t" :"=q" (a) : "0" (a)); *p = a; } } #endif else { insw_ns(ioaddr+XIRCREG_EDP, skb_put(skb, pktlen), (pktlen+1)>>1); } skb->protocol = eth_type_trans(skb, dev); skb->dev = dev; netif_rx(skb); lp->stats.rx_packets++; add_rx_bytes(&lp->stats, pktlen); if (!(rsr & PhyPkt)) lp->stats.multicast++; } } else { /* bad packet */ DEBUG(5, "rsr=%#02x\n", rsr); } if (rsr & PktTooLong) { lp->stats.rx_frame_errors++; DEBUG(3, "%s: Packet too long\n", dev->name); } if (rsr & CRCErr) { lp->stats.rx_crc_errors++; DEBUG(3, "%s: CRC error\n", dev->name); } if (rsr & AlignErr) { lp->stats.rx_fifo_errors++; /* okay ? */ DEBUG(3, "%s: Alignment error\n", dev->name); } /* clear the received/dropped/error packet */ PutWord(XIRCREG0_DO, 0x8000); /* issue cmd: skip_rx_packet */ /* get the new ethernet status */ eth_status = GetByte(XIRCREG_ESR); } if (rx_status & 0x10) { /* Receive overrun */ lp->stats.rx_over_errors++; PutByte(XIRCREG_CR, ClearRxOvrun); DEBUG(3, "receive overrun cleared\n"); } /***** transmit section ******/ if (int_status & PktTxed) { unsigned n, nn; n = lp->last_ptr_value; nn = GetByte(XIRCREG0_PTR); lp->last_ptr_value = nn; if (nn < n) /* rollover */ lp->stats.tx_packets += 256 - n; else if (n == nn) { /* happens sometimes - don't know why */ DEBUG(0, "PTR not changed?\n"); } else lp->stats.tx_packets += lp->last_ptr_value - n; netif_wake_queue(dev); } if (tx_status & 0x0002) { /* Execessive collissions */ DEBUG(0, "tx restarted due to execssive collissions\n"); PutByte(XIRCREG_CR, RestartTx); /* restart transmitter process */ } if (tx_status & 0x0040) lp->stats.tx_aborted_errors++; /* recalculate our work chunk so that we limit the duration of this * ISR to about 1/10 of a second. * Calculate only if we received a reasonable amount of bytes. */ if (bytes_rcvd > 1000) { u_long duration = jiffies - start_ticks; if (duration >= HZ/10) { /* if more than about 1/10 second */ maxrx_bytes = (bytes_rcvd * (HZ/10)) / duration; if (maxrx_bytes < 2000) maxrx_bytes = 2000; else if (maxrx_bytes > 22000) maxrx_bytes = 22000; DEBUG(1, "set maxrx=%u (rcvd=%u ticks=%lu)\n", maxrx_bytes, bytes_rcvd, duration); } else if (!duration && maxrx_bytes < 22000) { /* now much faster */ maxrx_bytes += 2000; if (maxrx_bytes > 22000) maxrx_bytes = 22000; DEBUG(1, "set maxrx=%u\n", maxrx_bytes); } } leave: if (lockup_hack) { if (int_status != 0xff && (int_status = GetByte(XIRCREG_ISR)) != 0) goto loop_entry; } SelectPage(saved_page); PutByte(XIRCREG_CR, EnableIntr); /* re-enable interrupts */ /* Instead of dropping packets during a receive, we could * force an interrupt with this command: * PutByte(XIRCREG_CR, EnableIntr|ForceIntr); */ } /* xirc2ps_interrupt */ /*====================================================================*/ static void do_tx_timeout(struct net_device *dev) { local_info_t *lp = dev->priv; printk(KERN_NOTICE "%s: transmit timed out\n", dev->name); lp->stats.tx_errors++; /* reset the card */ do_reset(dev,1); dev->trans_start = jiffies; netif_start_queue(dev); } static int do_start_xmit(struct sk_buff *skb, struct net_device *dev) { local_info_t *lp = dev->priv; ioaddr_t ioaddr = dev->base_addr; int okay; unsigned freespace; unsigned pktlen = skb? skb->len : 0; DEBUG(1, "do_start_xmit(skb=%p, dev=%p) len=%u\n", skb, dev, pktlen); tx_timeout_check(dev, do_tx_timeout); skb_tx_check(dev, skb); /* adjust the packet length to min. required * and hope that the buffer is large enough * to provide some random data. * fixme: For Mohawk we can change this by sending * a larger packetlen than we actually have; the chip will * pad this in his buffer with random bytes */ if (pktlen < ETH_ZLEN) pktlen = ETH_ZLEN; SelectPage(0); PutWord(XIRCREG0_TRS, (u_short)pktlen+2); freespace = GetWord(XIRCREG0_TSO); okay = freespace & 0x8000; freespace &= 0x7fff; /* TRS doesn't work - (indeed it is eliminated with sil-rev 1) */ okay = pktlen +2 < freespace; DEBUG(2 + (okay ? 2 : 0), "%s: avail. tx space=%u%s\n", dev->name, freespace, okay ? " (okay)":" (not enough)"); if (!okay) { /* not enough space */ return 1; /* upper layer may decide to requeue this packet */ } /* send the packet */ PutWord(XIRCREG_EDP, (u_short)pktlen); outsw_ns(ioaddr+XIRCREG_EDP, skb->data, pktlen>>1); if (pktlen & 1) PutByte(XIRCREG_EDP, skb->data[pktlen-1]); if (lp->mohawk) PutByte(XIRCREG_CR, TransmitPacket|EnableIntr); DEV_KFREE_SKB (skb); dev->trans_start = jiffies; add_tx_bytes(&lp->stats, pktlen); netif_start_queue(dev); return 0; } static struct net_device_stats * do_get_stats(struct net_device *dev) { local_info_t *lp = dev->priv; /* lp->stats.rx_missed_errors = GetByte(?) */ return &lp->stats; } /**************** * Set all addresses: This first one is the individual address, * the next 9 addresses are taken from the multicast list and * the rest is filled with the individual address. */ static void set_addresses(struct net_device *dev) { ioaddr_t ioaddr = dev->base_addr; local_info_t *lp = dev->priv; struct dev_mc_list *dmi = dev->mc_list; char *addr; int i,j,k,n; SelectPage(k=0x50); for (i=0,j=8,n=0; ; i++, j++) { if (i > 5) { if (++n > 9) break; i = 0; } if (j > 15) { j = 8; k++; SelectPage(k); } if (n && n <= dev->mc_count && dmi) { addr = dmi->dmi_addr; dmi = dmi->next; } else addr = dev->dev_addr; if (lp->mohawk) PutByte(j, addr[5-i]); else PutByte(j, addr[i]); } SelectPage(0); } /**************** * Set or clear the multicast filter for this adaptor. * We can filter up to 9 addresses, if more are requested we set * multicast promiscuous mode. */ static void set_multicast_list(struct net_device *dev) { ioaddr_t ioaddr = dev->base_addr; SelectPage(0x42); if (dev->flags & IFF_PROMISC) { /* snoop */ PutByte(XIRCREG42_SWC1, 0x06); /* set MPE and PME */ } else if (dev->mc_count > 9 || (dev->flags & IFF_ALLMULTI)) { PutByte(XIRCREG42_SWC1, 0x06); /* set MPE */ } else if (dev->mc_count) { /* the chip can filter 9 addresses perfectly */ PutByte(XIRCREG42_SWC1, 0x00); SelectPage(0x40); PutByte(XIRCREG40_CMD0, Offline); set_addresses(dev); SelectPage(0x40); PutByte(XIRCREG40_CMD0, EnableRecv | Online); } else { /* standard usage */ PutByte(XIRCREG42_SWC1, 0x00); } SelectPage(0); } static int do_config(struct net_device *dev, struct ifmap *map) { local_info_t *local = dev->priv; DEBUG(0, "do_config(%p)\n", dev); if (map->port != 255 && map->port != dev->if_port) { if (map->port > 4) return -EINVAL; if (!map->port) { local->probe_port = 1; dev->if_port = 1; } else { local->probe_port = 0; dev->if_port = map->port; } printk(KERN_INFO "%s: switching to %s port\n", dev->name, if_names[dev->if_port]); do_reset(dev,1); /* not the fine way :-) */ } return 0; } /**************** * Open the driver */ static int do_open(struct net_device *dev) { local_info_t *lp = dev->priv; dev_link_t *link = &lp->link; DEBUG(0, "do_open(%p)\n", dev); /* Check that the PCMCIA card is still here. */ /* Physical device present signature. */ if (!DEV_OK(link)) return -ENODEV; /* okay */ link->open++; MOD_INC_USE_COUNT; netif_start_queue(dev); netif_mark_up(dev); do_reset(dev,1); return 0; } static int do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { local_info_t *local = dev->priv; ioaddr_t ioaddr = dev->base_addr; u16 *data = (u16 *)&rq->ifr_data; DEBUG(1, "%s: ioctl(%-.6s, %#04x) %04x %04x %04x %04x\n", dev->name, rq->ifr_ifrn.ifrn_name, cmd, data[0], data[1], data[2], data[3]); if (!local->mohawk) return -EOPNOTSUPP; switch(cmd) { case SIOCDEVPRIVATE: /* Get the address of the PHY in use. */ data[0] = 0; /* we have only this address */ /* fall trough */ case SIOCDEVPRIVATE+1: /* Read the specified MII register. */ data[3] = mii_rd(ioaddr, data[0] & 0x1f, data[1] & 0x1f); break; case SIOCDEVPRIVATE+2: /* Write the specified MII register */ if (!capable(CAP_NET_ADMIN)) return -EPERM; mii_wr(ioaddr, data[0] & 0x1f, data[1] & 0x1f, data[2], 16); break; default: return -EOPNOTSUPP; } return 0; } static void hardreset(struct net_device *dev) { local_info_t *local = dev->priv; ioaddr_t ioaddr = dev->base_addr; SelectPage(4); udelay(1); PutByte(XIRCREG4_GPR1, 0); /* clear bit 0: power down */ busy_loop(HZ/25); /* wait 40 msec */ if (local->mohawk) PutByte(XIRCREG4_GPR1, 1); /* set bit 0: power up */ else PutByte(XIRCREG4_GPR1, 1 | 4); /* set bit 0: power up, bit 2: AIC */ busy_loop(HZ/50); /* wait 20 msec */ } static void do_reset(struct net_device *dev, int full) { local_info_t *local = dev->priv; ioaddr_t ioaddr = dev->base_addr; unsigned value; DEBUG(0, "%s: do_reset(%p,%d)\n", dev? dev->name:"eth?", dev, full); hardreset(dev); PutByte(XIRCREG_CR, SoftReset); /* set */ busy_loop(HZ/50); /* wait 20 msec */ PutByte(XIRCREG_CR, 0); /* clear */ busy_loop(HZ/25); /* wait 40 msec */ if (local->mohawk) { SelectPage(4); /* set pin GP1 and GP2 to output (0x0c) * set GP1 to low to power up the ML6692 (0x00) * set GP2 to high to power up the 10Mhz chip (0x02) */ PutByte(XIRCREG4_GPR0, 0x0e); } /* give the circuits some time to power up */ busy_loop(HZ/2); /* about 500ms */ local->last_ptr_value = 0; local->silicon = local->mohawk ? (GetByte(XIRCREG4_BOV) & 0x70) >> 4 : (GetByte(XIRCREG4_BOV) & 0x30) >> 4; if (local->probe_port) { if (!local->mohawk) { SelectPage(4); PutByte(XIRCREG4_GPR0, 4); local->probe_port = 0; } } else if (dev->if_port == 2) { /* enable 10Base2 */ SelectPage(0x42); PutByte(XIRCREG42_SWC1, 0xC0); } else { /* enable 10BaseT */ SelectPage(0x42); PutByte(XIRCREG42_SWC1, 0x80); } busy_loop(HZ/25); /* wait 40 msec to let it complete */ #ifdef PCMCIA_DEBUG if (pc_debug) { SelectPage(0); value = GetByte(XIRCREG_ESR); /* read the ESR */ printk(KERN_DEBUG "%s: ESR is: %#02x\n", dev->name, value); } #endif /* setup the ECR */ SelectPage(1); PutByte(XIRCREG1_IMR0, 0xff); /* allow all ints */ PutByte(XIRCREG1_IMR1, 1 ); /* and Set TxUnderrunDetect */ value = GetByte(XIRCREG1_ECR); #if 0 if (local->mohawk) value |= DisableLinkPulse; PutByte(XIRCREG1_ECR, value); #endif DEBUG(0, "%s: ECR is: %#02x\n", dev->name, value); SelectPage(0x42); PutByte(XIRCREG42_SWC0, 0x20); /* disable source insertion */ if (local->silicon != 1) { /* set the local memory dividing line. * The comments in the sample code say that this is only * settable with the scipper version 2 which is revision 0. * Always for CE3 cards */ SelectPage(2); PutWord(XIRCREG2_RBS, 0x2000); } if (full) set_addresses(dev); /* Hardware workaround: * The receive byte pointer after reset is off by 1 so we need * to move the offset pointer back to 0. */ SelectPage(0); PutWord(XIRCREG0_DO, 0x2000); /* change offset command, off=0 */ /* setup MAC IMRs and clear status registers */ SelectPage(0x40); /* Bit 7 ... bit 0 */ PutByte(XIRCREG40_RMASK0, 0xff); /* ROK, RAB, rsv, RO, CRC, AE, PTL, MP */ PutByte(XIRCREG40_TMASK0, 0xff); /* TOK, TAB, SQE, LL, TU, JAB, EXC, CRS */ PutByte(XIRCREG40_TMASK1, 0xb0); /* rsv, rsv, PTD, EXT, rsv,rsv,rsv, rsv*/ PutByte(XIRCREG40_RXST0, 0x00); /* ROK, RAB, REN, RO, CRC, AE, PTL, MP */ PutByte(XIRCREG40_TXST0, 0x00); /* TOK, TAB, SQE, LL, TU, JAB, EXC, CRS */ PutByte(XIRCREG40_TXST1, 0x00); /* TEN, rsv, PTD, EXT, retry_counter:4 */ if (full && local->mohawk && init_mii(dev)) { if (dev->if_port == 4 || local->dingo || local->new_mii) { printk(KERN_INFO "%s: MII selected\n", dev->name); SelectPage(2); PutByte(XIRCREG2_MSR, GetByte(XIRCREG2_MSR) | 0x08); busy_loop(HZ/50); } else { printk(KERN_INFO "%s: MII detected; using 10mbs\n", dev->name); SelectPage(0x42); if (dev->if_port == 2) /* enable 10Base2 */ PutByte(XIRCREG42_SWC1, 0xC0); else /* enable 10BaseT */ PutByte(XIRCREG42_SWC1, 0x80); busy_loop(HZ/25); /* wait 40 msec to let it complete */ } if (full_duplex) PutByte(XIRCREG1_ECR, GetByte(XIRCREG1_ECR | FullDuplex)); } else { /* No MII */ SelectPage(0); value = GetByte(XIRCREG_ESR); /* read the ESR */ dev->if_port = (value & MediaSelect) ? 1 : 2; } /* configure the LEDs */ SelectPage(2); if (dev->if_port == 1 || dev->if_port == 4) /* TP: Link and Activity */ PutByte(XIRCREG2_LED, 0x3b); else /* Coax: Not-Collision and Activity */ PutByte(XIRCREG2_LED, 0x3a); if (local->dingo) PutByte(0x0b, 0x04); /* 100 Mbit LED */ /* enable receiver and put the mac online */ if (full) { SelectPage(0x40); PutByte(XIRCREG40_CMD0, EnableRecv | Online); } /* setup Ethernet IMR and enable interrupts */ SelectPage(1); PutByte(XIRCREG1_IMR0, 0xff); udelay(1); SelectPage(0); PutByte(XIRCREG_CR, EnableIntr); if (local->modem && !local->dingo) { /* do some magic */ if (!(GetByte(0x10) & 0x01)) PutByte(0x10, 0x11); /* unmask master-int bit */ } if (full) printk(KERN_INFO "%s: media %s, silicon revision %d\n", dev->name, if_names[dev->if_port], local->silicon); /* We should switch back to page 0 to avoid a bug in revision 0 * where regs with offset below 8 can't be read after an access * to the MAC registers */ SelectPage(0); } /**************** * Initialize the Media-Independent-Interface * Returns: True if we have a good MII */ static int init_mii(struct net_device *dev) { local_info_t *local = dev->priv; ioaddr_t ioaddr = dev->base_addr; unsigned control, status, linkpartner; int i; status = mii_rd(ioaddr, 0, 1); if ((status & 0xff00) != 0x7800) return 0; /* No MII */ local->new_mii = (mii_rd(ioaddr, 0, 2) != 0xffff); if (local->probe_port) control = 0x1000; /* auto neg */ else if (dev->if_port == 4) control = 0x2000; /* no auto neg, 100mbs mode */ else control = 0x0000; /* no auto neg, 10mbs mode */ mii_wr(ioaddr, 0, 0, control, 16); udelay(100); control = mii_rd(ioaddr, 0, 0); if (control & 0x0400) { printk(KERN_NOTICE "%s can't take PHY out of isolation mode\n", dev->name); local->probe_port = 0; return 0; } if (local->probe_port) { /* according to the DP83840A specs the auto negotiation process * may take up to 3.5 sec, so we use this also for our ML6692 * Fixme: Better to use a timer here! */ for (i=0; i < 35; i++) { busy_loop(HZ/10); /* wait 100 msec */ status = mii_rd(ioaddr, 0, 1); if ((status & 0x0020) && (status & 0x0004)) break; } if (!(status & 0x0020)) { printk(KERN_INFO "%s: autonegotiation failed;" " using 10mbs\n", dev->name); if (!local->new_mii) { control = 0x0000; mii_wr(ioaddr, 0, 0, control, 16); udelay(100); SelectPage(0); dev->if_port = (GetByte(XIRCREG_ESR) & MediaSelect) ? 1 : 2; } } else { linkpartner = mii_rd(ioaddr, 0, 5); printk(KERN_INFO "%s: MII link partner: %04x\n", dev->name, linkpartner); if (linkpartner & 0x0080) { dev->if_port = 4; } else dev->if_port = 1; } } return 1; } static void do_powerdown(struct net_device *dev) { ioaddr_t ioaddr = dev->base_addr; DEBUG(0, "do_powerdown(%p)\n", dev); SelectPage(4); PutByte(XIRCREG4_GPR1, 0); /* clear bit 0: power down */ SelectPage(0); } static int do_stop(struct net_device *dev) { ioaddr_t ioaddr = dev->base_addr; local_info_t *lp = dev->priv; dev_link_t *link = &lp->link; DEBUG(0, "do_stop(%p)\n", dev); if (!link) return -ENODEV; netif_stop_queue(dev); netif_mark_down(dev); SelectPage(0); PutByte(XIRCREG_CR, 0); /* disable interrupts */ SelectPage(0x01); PutByte(XIRCREG1_IMR0, 0x00); /* forbid all ints */ SelectPage(4); PutByte(XIRCREG4_GPR1, 0); /* clear bit 0: power down */ SelectPage(0); link->open--; if (link->state & DEV_STALE_CONFIG) mod_timer(&link->release, jiffies + HZ/20); MOD_DEC_USE_COUNT; return 0; } static int __init init_xirc2ps_cs(void) { servinfo_t serv; printk(KERN_INFO "%s\n", version); if (lockup_hack) printk(KINF_XIRC "lockup hack is enabled\n"); CardServices(GetCardServicesInfo, &serv); if (serv.Revision != CS_RELEASE_CODE) { printk(KNOT_XIRC "Card Services release does not match!\n"); return -1; } DEBUG(0, "pc_debug=%d\n", pc_debug); register_pccard_driver(&dev_info, &xirc2ps_attach, &xirc2ps_detach); return 0; } static void __exit exit_xirc2ps_cs(void) { DEBUG(0, "unloading\n"); unregister_pccard_driver(&dev_info); while (dev_list) { if (dev_list->state & DEV_CONFIG) xirc2ps_release((u_long)dev_list); if (dev_list) /* xirc2ps_release() might already have detached... */ xirc2ps_detach(dev_list); } } module_init(init_xirc2ps_cs); module_exit(exit_xirc2ps_cs);