/*====================================================================== Aironet driver for 4500 and 4800 series cards The contents of this file are subject to the Mozilla Public License Version 1.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.mozilla.org/MPL/ Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License for the specific language governing rights and limitations under the License. This code was developed by Benjamin Reed including portions of which come from the Aironet PC4500 Developer's Reference Manual and used with permission. Copyright (C) 1999 Benjamin Reed. All Rights Reserved. Permission to use code in the Developer's manual was granted for this driver by Aironet. ======================================================================*/ #ifndef __KERNEL__ #define __KERNEL__ #endif #ifndef MODULE #define MODULE #endif #include #include #ifdef CONFIG_MODVERSIONS #define MODVERSIONS #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_PCI # include static struct { unsigned short vendor; unsigned short id; } card_ids[] = { { 0x14b9, 1 }, { 0x14b9, 0x4500 }, { 0x14b9, 0x4800 }, { 0, 0 } }; #endif /* Include Wireless Extension definition and check version - Jean II */ #include #if WIRELESS_EXT < 9 #warning "Wireless extension v9 or newer required - please upgrade your kernel" #undef WIRELESS_EXT #endif #undef WIRELESS_SPY // enable iwspy support /* As you can see this list is HUGH! I really don't know what a lot of these counts are about, but they are all here for completeness. If the IGNLABEL macro is put in infront of the label, that statistic will not be included in the list of statistics in the /proc filesystem */ #define IGNLABEL 0&(int) static char *statsLabels[] = { "RxOverrun", IGNLABEL "RxPlcpCrcErr", IGNLABEL "RxPlcpFormatErr", IGNLABEL "RxPlcpLengthErr", "RxMacCrcErr", "RxMacCrcOk", "RxWepErr", "RxWepOk", "RetryLong", "RetryShort", "MaxRetries", "NoAck", "NoCts", "RxAck", "RxCts", "TxAck", "TxRts", "TxCts", "TxMc", "TxBc", "TxUcFrags", "TxUcPackets", "TxBeacon", "RxBeacon", "TxSinColl", "TxMulColl", "DefersNo", "DefersProt", "DefersEngy", "DupFram", "RxFragDisc", "TxAged", "RxAged", "LostSync-MaxRetry", "LostSync-MissedBeacons", "LostSync-ArlExceeded", "LostSync-Deauth", "LostSync-Disassoced", "LostSync-TsfTiming", "HostTxMc", "HostTxBc", "HostTxUc", "HostTxFail", "HostRxMc", "HostRxBc", "HostRxUc", "HostRxDiscard", IGNLABEL "HmacTxMc", IGNLABEL "HmacTxBc", IGNLABEL "HmacTxUc", IGNLABEL "HmacTxFail", IGNLABEL "HmacRxMc", IGNLABEL "HmacRxBc", IGNLABEL "HmacRxUc", IGNLABEL "HmacRxDiscard", IGNLABEL "HmacRxAccepted", "SsidMismatch", "ApMismatch", "RatesMismatch", "AuthReject", "AuthTimeout", "AssocReject", "AssocTimeout", IGNLABEL "ReasonOutsideTable", IGNLABEL "ReasonStatus1", IGNLABEL "ReasonStatus2", IGNLABEL "ReasonStatus3", IGNLABEL "ReasonStatus4", IGNLABEL "ReasonStatus5", IGNLABEL "ReasonStatus6", IGNLABEL "ReasonStatus7", IGNLABEL "ReasonStatus8", IGNLABEL "ReasonStatus9", IGNLABEL "ReasonStatus10", IGNLABEL "ReasonStatus11", IGNLABEL "ReasonStatus12", IGNLABEL "ReasonStatus13", IGNLABEL "ReasonStatus14", IGNLABEL "ReasonStatus15", IGNLABEL "ReasonStatus16", IGNLABEL "ReasonStatus17", IGNLABEL "ReasonStatus18", IGNLABEL "ReasonStatus19", "RxMan", "TxMan", "RxRefresh", "TxRefresh", "RxPoll", "TxPoll", "HostRetries", "LostSync-HostReq", "HostTxBytes", "HostRxBytes", "ElapsedUsec", "ElapsedSec", "LostSyncBetterAP", (char*)-1 }; #ifndef RUN_AT #define RUN_AT(x) (jiffies+(x)) #endif /* These variables are for insmod, since it seems that the rates can only be set in setup_card. Rates should be a comma separated (no spaces) list of rates (up to 8). */ static int rates[8] = {0,0,0,0,0,0,0,0}; static int basic_rate = 0; static char *ssids[3] = {0,0,0}; static int io[4]={ 0,}; static int irq[4]={ 0,}; static int maxencrypt = 0; /* The highest rate that the card can encrypt at. 0 means no limit. For old cards this was 4 */ static int auto_wep = 0; /* If set, it tries to figure out the wep mode */ static int aux_bap = 0; /* Checks to see if the aux ports are needed to read the bap, needed on some older cards and buses. */ static int adhoc = 0; #if (LINUX_VERSION_CODE > 0x20155) /* new kernel */ MODULE_AUTHOR("Benjamin Reed"); MODULE_DESCRIPTION("Support for Cisco/Aironet 802.11 wireless ethernet \ cards. Direct support for ISA/PCI cards and support \ for PCMCIA when used with airo_cs."); MODULE_SUPPORTED_DEVICE("Aironet 4500, 4800 and Cisco 340"); MODULE_PARM(io,"1-4i"); MODULE_PARM(irq,"1-4i"); MODULE_PARM(basic_rate,"i"); MODULE_PARM(rates,"1-8i"); MODULE_PARM(ssids,"1-3s"); MODULE_PARM(auto_wep,"i"); MODULE_PARM_DESC(auto_wep, "If non-zero, the driver will keep looping through \ the authentication options until an association is made. The value of \ auto_wep is number of the wep keys to check. A value of 2 will try using \ the key at index 0 and index 1."); MODULE_PARM(aux_bap,"i"); MODULE_PARM_DESC(aux_bap, "If non-zero, the driver will switch into a mode \ than seems to work better for older cards with some older buses. Before \ switching it checks that the switch is needed."); MODULE_PARM(maxencrypt, "i"); MODULE_PARM_DESC(maxencrypt, "The maximum speed that the card can do \ encryption. Units are in 512kbs. Zero (default) means there is no limit. \ Older cards used to be limited to 2mbs (4)."); MODULE_PARM(adhoc, "i"); MODULE_PARM_DESC(adhoc, "If non-zero, the card will start in adhoc mode."); #include #define KFREE_SKB(a,b) dev_kfree_skb(a) #define PROC_REGISTER(a,b) proc_register(a,b) #else /* old kernel */ #define SPIN_LOCK_UNLOCKED 0 #define spinlock_t int #define spin_lock_irqsave(x, y) save_flags(y); cli() #define spin_unlock_irqrestore(x, y) restore_flags(y) #define timer_pending(a) (((a)->prev) != NULL) #define KFREE_SKB(a,b) dev_kfree_skb(a,b) #define PROC_REGISTER(a,b) proc_register_dynamic(a,b) #endif #if (LINUX_VERSION_CODE < 0x020311) #define PROC_UNREGISTER(root, entry) proc_unregister(root, (entry)->low_ino) #else #undef PROC_REGISTER #define PROC_REGISTER(root, entry) error #define PROC_UNREGISTER(root, entry) error #endif #define min(x,y) ((x='a'&&x<='z')||(x>='A'&&x<='Z')||(x>='0'&&x<='9')) /* This is a kind of sloppy hack to get this information to OUT4500 and IN4500. I would be extremely interested in the situation where this doesnt work though!!! */ static int do8bitIO = 0; /* Return codes */ #define SUCCESS 0 #define ERROR -1 #define NO_PACKET -2 /* Commands */ #define NOP 0x0010 #define MAC_ENABLE 0x0001 #define MAC_DISABLE 0x0002 #define CMD_ACCESS 0x0021 #define CMD_ALLOCATETX 0x000a #define CMD_TRANSMIT 0x000b #define HOSTSLEEP 0x85 #define CMD_SETMODE 0x0009 #define CMD_ENABLEAUX 0x0111 /* Registers */ #define COMMAND 0x00 #define PARAM0 0x02 #define PARAM1 0x04 #define PARAM2 0x06 #define STATUS 0x08 #define RESP0 0x0a #define RESP1 0x0c #define RESP2 0x0e #define LINKSTAT 0x10 #define SELECT0 0x18 #define OFFSET0 0x1c #define RXFID 0x20 #define TXALLOCFID 0x22 #define TXCOMPLFID 0x24 #define DATA0 0x36 #define EVSTAT 0x30 #define EVINTEN 0x32 #define EVACK 0x34 #define SWS0 0x28 #define SWS1 0x2a #define SWS2 0x2c #define SWS3 0x2e #define AUXPAGE 0x3A #define AUXOFF 0x3C #define AUXDATA 0x3E /* BAP selectors */ #define BAP0 0 // Used for receiving packets #define BAP1 2 // Used for xmiting packets and working with RIDS /* Flags */ #define COMMAND_BUSY 0x8000 #define BAP_BUSY 0x8000 #define BAP_ERR 0x4000 #define BAP_DONE 0x2000 #define EV_CMD 0x10 #define EV_CLEARCOMMANDBUSY 0x4000 #define EV_RX 0x01 #define EV_TX 0x02 #define EV_TXEXC 0x04 #define EV_ALLOC 0x08 #define EV_LINK 0x80 #define EV_AWAKE 0x100 #define EV_UNKNOWN 0x800 #define STATUS_INTS ( EV_AWAKE | EV_LINK | EV_TXEXC | EV_TX | EV_RX | EV_UNKNOWN) /* The RIDs */ #define RID_WEP_PERM 0xFF16 #define RID_WEP_TEMP 0xFF15 #define RID_SSID 0xFF11 #define RID_APLIST 0xFF12 #define RID_CONFIG 0xFF10 #define RID_ACTUALCONFIG 0xFF20 /*readonly*/ #define RID_MODULATION 0xFF17 #define RID_STATS 0xFF68 #define RID_STATSDELTA 0xFF69 #define RID_STATSDELTACLEAR 0xFF6A /* * Rids and endian-ness: The Rids will always be little endian, since * this is what the card wants. So any assignments to are from the * rids need to be converted to the correct endian. */ /* This structure came from an email sent to me from an engineer at aironet for inclusion into this driver */ typedef struct { u16 len; u16 kindex; u8 mac[6]; u16 klen; u8 key[16]; /* 40-bit keys */ } WepKeyRid; /* These structures are from the Aironet's PC4500 Developers Manual */ typedef struct { u16 len; u8 ssid[32]; } Ssid; typedef struct { u16 len; Ssid ssids[3]; } SsidRid; typedef struct { u16 len; u16 modulation; #define MOD_DEFAULT 0 #define MOD_CCK 1 #define MOD_MOK 2 } ModulationRid; typedef struct { u16 cmd; u16 parm0; u16 parm1; u16 parm2; } Cmd; typedef struct { u16 status; u16 rsp0; u16 rsp1; u16 rsp2; } Resp; typedef struct { u16 len; /* sizeof(ConfigRid) */ u16 opmode; /* operating mode */ #define MODE_STA_IBSS 0 #define MODE_STA_ESS 1 #define MODE_AP 2 #define MODE_AP_RPTR 3 #define MODE_ETHERNET_HOST (0<<8) /* rx payloads converted */ #define MODE_LLC_HOST (1<<8) /* rx payloads left as is */ #define MODE_AIRONET_EXTEND (1<<9) /* enable Aironet extenstions */ #define MODE_AP_INTERFACE (1<<10) /* enable ap interface extensions */ u16 rmode; /* receive mode */ #define RXMODE_BC_MC_ADDR 0 #define RXMODE_BC_ADDR 1 /* ignore multicasts */ #define RXMODE_ADDR 2 /* ignore multicast and broadcast */ #define RXMODE_RFMON 3 /* wireless monitor mode */ #define RXMODE_RFMON_ANYBSS 4 #define RXMODE_LANMON 5 /* lan style monitor -- data packets only */ #define RXMODE_DISABLE_802_3_HEADER (1<<8) /* disables 802.3 header on rx */ u16 fragThresh; u16 rtsThres; u8 macAddr[6]; u8 rates[8]; u16 shortRetryLimit; u16 longRetryLimit; u16 txLifetime; /* in kusec */ u16 rxLifetime; /* in kusec */ u16 stationary; u16 ordering; u16 u16deviceType; /* for overriding device type */ u16 _reserved1[5]; /*---------- Scanning/Associating ----------*/ u16 scanMode; #define SCANMODE_ACTIVE 0 #define SCANMODE_PASSIVE 1 #define SCANMODE_AIROSCAN 2 u16 probeDelay; /* in kusec */ u16 probeEnergyTimeout; /* in kusec */ u16 probeResponseTimeout; u16 beaconListenTimeout; u16 joinNetTimeout; u16 authTimeout; u16 authType; #define AUTH_OPEN 0x1 #define AUTH_ENCRYPT 0x101 #define AUTH_SHAREDKEY 0x102 u16 associationTimeout; u16 specifiedApTimeout; u16 offlineScanInterval; u16 offlineScanDuration; u16 linkLossDelay; u16 maxBeaconLostTime; u16 refreshInterval; #define DISABLE_REFRESH 0xFFFF u16 _reserved1a[1]; /*---------- Power save operation ----------*/ u16 powerSaveMode; #define POWERSAVE_CAM 0 #define POWERSAVE_PSP 1 #define POWERSAVE_PSPCAM 2 u16 sleepForDtims; u16 listenInterval; u16 fastListenInterval; u16 listenDecay; u16 fastListenDelay; u16 _reserved2[2]; /*---------- Ap/Ibss config items ----------*/ u16 beaconPeriod; u16 atimDuration; u16 hopPeriod; u16 channelSet; u16 channel; u16 dtimPeriod; u16 _reserved3[2]; /*---------- Radio configuration ----------*/ u16 radioType; #define RADIOTYPE_DEFAULT 0 #define RADIOTYPE_802_11 1 #define RADIOTYPE_LEGACY 2 u8 rxDiversity; u8 txDiversity; u16 txPower; #define TXPOWER_DEFAULT 0 u16 rssiThreshold; #define RSSI_DEFAULT 0 u16 modulation; u16 radioSpecific[3]; /*---------- Aironet Extensions ----------*/ u8 nodeName[16]; u16 arlThreshold; u16 arlDecay; u16 arlDelay; u16 _reserved4[1]; /*---------- Aironet Extensions ----------*/ u16 magicAction; #define MAGIC_ACTION_STSCHG 1 #define MACIC_ACTION_RESUME 2 #define MAGIC_IGNORE_MCAST (1<<8) #define MAGIC_IGNORE_BCAST (1<<9) #define MAGIC_SWITCH_TO_PSP (0<<10) #define MAGIC_STAY_IN_CAM (1<<10) u16 filler; } ConfigRid; typedef struct { u16 len; u8 mac[6]; u16 mode; u16 errorCode; u16 sigQuality; u16 SSIDlen; char SSID[32]; char apName[16]; char bssid[4][6]; u16 beaconPeriod; u16 dimPeriod; u16 atimDuration; u16 hopPeriod; u16 channelSet; u16 channel; u16 hopsToBackbone; u16 apTotalLoad; u16 generatedLoad; u16 accumulatedArl; u16 signalQuality; u16 currentXmitRate; u16 apDevExtensions; u16 normalizedSignalStrength; } StatusRid; typedef struct { u16 len; u8 ap[4][6]; } APListRid; typedef struct { u16 len; char oui[3]; u16 prodNum; char manName[32]; char prodName[16]; char prodVer[8]; char factoryAddr[6]; char aironetAddr[6]; u16 radioType; u16 country; char callid[6]; char supportedRates[8]; char rxDiversity; char txDiversity; u16 txPowerLevels[8]; u16 hardVer; u16 hardCap; u16 tempRange; u16 softVer; u16 softSubVer; u16 interfaceVer; u16 softCap; u16 bootBlockVer; } CapabilityRid; #define TXCTL_TXOK (1<<1) /* report if tx is ok */ #define TXCTL_TXEX (1<<2) /* report if tx fails */ #define TXCTL_802_3 (0<<3) /* 802.3 packet */ #define TXCTL_802_11 (1<<3) /* 802.11 mac packet */ #define TXCTL_ETHERNET (0<<4) /* payload has ethertype */ #define TXCTL_LLC (1<<4) /* payload is llc */ #define TXCTL_RELEASE (0<<5) /* release after completion */ #define TXCTL_NORELEASE (1<<5) /* on completion returns to host */ #define BUSY_FID 0x10000 #ifdef WIRELESS_EXT // Frequency list (map channels to frequencies) const long frequency_list[] = { 2412, 2417, 2422, 2427, 2432, 2437, 2442, 2447, 2452, 2457, 2462, 2467, 2472, 2484 }; // A few details needed for WEP (Wireless Equivalent Privacy) #define MAX_KEY_SIZE 13 // 128 (?) bits #define MIN_KEY_SIZE 5 // 40 bits RC4 - WEP #define MAX_KEYS 4 // 4 different keys typedef struct wep_key_t { u16 len; u8 key[16]; /* 40-bit and 104-bit keys */ } wep_key_t; #endif /* WIRELESS_EXT */ static char *version = "airo.c 1.3 2000/12/11 (Benjamin Reed)"; struct airo_info; static int get_dec_u16( char *buffer, int *start, int limit ); static void OUT4500( struct airo_info *, u16 register, u16 value ); static unsigned short IN4500( struct airo_info *, u16 register ); static u16 setup_card(struct airo_info*, u8 *mac, ConfigRid *); static void enable_interrupts(struct airo_info*); static void disable_interrupts(struct airo_info*); static u16 issuecommand(struct airo_info*, Cmd *pCmd, Resp *pRsp); static int bap_setup(struct airo_info*, u16 rid, u16 offset, int whichbap); static int aux_bap_read(struct airo_info*, u16 *pu16Dst, int bytelen, int whichbap); static int fast_bap_read(struct airo_info*, u16 *pu16Dst, int bytelen, int whichbap); static int bap_write(struct airo_info*, const u16 *pu16Src, int bytelen, int whichbap); static int PC4500_accessrid(struct airo_info*, u16 rid, u16 accmd); static int PC4500_readrid(struct airo_info*, u16 rid, void *pBuf, int len); static int PC4500_writerid(struct airo_info*, u16 rid, const void *pBuf, int len); static int do_writerid( struct airo_info*, u16 rid, const void *rid_data, int len ); static u16 transmit_allocate(struct airo_info*, int lenPayload); static int transmit_802_3_packet(struct airo_info*, u16 TxFid, char *pPacket, int len); static void airo_interrupt( int irq, void* dev_id, struct pt_regs *regs); #ifdef WIRELESS_EXT static int airo_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); struct iw_statistics *airo_get_wireless_stats (struct net_device *dev); #endif /* WIRELESS_EXT */ struct airo_info { struct net_device_stats stats; int open; #if (LINUX_VERSION_CODE < 0x020363) char name[8]; #endif struct net_device *dev; /* Note, we can have MAX_FIDS outstanding. FIDs are 16-bits, so we use the high bit to mark wether it is in use. */ #define MAX_FIDS 6 int fids[MAX_FIDS]; int registered; ConfigRid config; u16 authtype; // Used with auto_wep char keyindex; // Used with auto wep char defindex; // Used with auto wep struct timer_list timer; #if (LINUX_VERSION_CODE < 0x20311) struct proc_dir_entry proc_entry; struct proc_dir_entry proc_statsdelta_entry; struct proc_dir_entry proc_stats_entry; struct proc_dir_entry proc_status_entry; struct proc_dir_entry proc_config_entry; struct proc_dir_entry proc_SSID_entry; struct proc_dir_entry proc_APList_entry; struct proc_dir_entry proc_wepkey_entry; #else struct proc_dir_entry *proc_entry; #endif struct airo_info *next; spinlock_t bap0_lock; spinlock_t bap1_lock; spinlock_t aux_lock; spinlock_t cmd_lock; int flags; #define FLAG_RADIO_OFF 0x02 int (*bap_read)(struct airo_info*, u16 *pu16Dst, int bytelen, int whichbap); #ifdef WIRELESS_EXT int need_commit; // Need to set config struct iw_statistics wstats; // wireless stats #endif /* WIRELESS_EXT */ }; static inline int bap_read(struct airo_info *ai, u16 *pu16Dst, int bytelen, int whichbap) { return ai->bap_read(ai, pu16Dst, bytelen, whichbap); } static int setup_proc_entry( struct net_device *dev, struct airo_info *apriv ); static int takedown_proc_entry( struct net_device *dev, struct airo_info *apriv ); static int airo_open(struct net_device *dev) { struct airo_info *info = dev->priv; MOD_INC_USE_COUNT; if ( info->open == 0 ) { enable_interrupts(info); } info->open++; netif_start_queue(dev); netif_mark_up(dev); return 0; } static int airo_start_xmit(struct sk_buff *skb, struct net_device *dev) { s16 len; s16 retval = 0; u16 status; u32 flags; s8 *buffer; int i; struct airo_info *priv = (struct airo_info*)dev->priv; u32 *fids = priv->fids; if ( skb == NULL ) { printk( KERN_ERR "airo: skb == NULL!!!\n" ); return 0; } /* Find a vacant FID */ spin_lock_irqsave(&priv->bap1_lock, flags); for( i = 0; i < MAX_FIDS; i++ ) { if ( !( fids[i] & 0xffff0000 ) ) break; } if ( i == MAX_FIDS ) { netif_stop_queue(dev); retval = -EBUSY; goto tx_done; } len = ETH_ZLEN < skb->len ? skb->len : ETH_ZLEN; /* check min length*/ buffer = skb->data; status = transmit_802_3_packet( priv, fids[i], skb->data, len ); if ( status == SUCCESS ) { /* Mark fid as used & save length for later */ fids[i] |= (len << 16); dev->trans_start = jiffies; } else { ((struct airo_info*)dev->priv)->stats.tx_errors++; } tx_done: spin_unlock_irqrestore(&priv->bap1_lock, flags); KFREE_SKB( skb, FREE_WRITE ); return 0; } static struct net_device_stats *airo_get_stats(struct net_device *dev) { return &(((struct airo_info*)dev->priv)->stats); } static void airo_set_multicast_list(struct net_device *dev) { if ((dev->flags&IFF_ALLMULTI)||dev->mc_count>0) { /* Turn on multicast. (Should be already setup...) */ } } static int private_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { return 0; } static int airo_change_mtu(struct net_device *dev, int new_mtu) { if ((new_mtu < 68) || (new_mtu > 2400)) return -EINVAL; dev->mtu = new_mtu; return 0; } static int airo_close(struct net_device *dev) { struct airo_info *ai = (struct airo_info*)dev->priv; ai->open--; netif_stop_queue(dev); netif_mark_down(dev); if ( !ai->open ) { disable_interrupts( ai ); } MOD_DEC_USE_COUNT; return 0; } static void del_airo_dev( struct net_device *dev ); void stop_airo_card( struct net_device *dev ) { struct airo_info *ai = (struct airo_info*)dev->priv; takedown_proc_entry( dev, ai ); if (ai->registered) { unregister_netdev( dev ); ai->registered = 0; } disable_interrupts(ai); release_region( dev->base_addr, 64 ); free_irq( dev->irq, dev ); del_airo_dev( dev ); /* This goofy + 1 thing is because sometimes init_ethernet will do a separate allocation for priv and sometimes not... */ if (dev->priv && dev->priv != dev + 1) kfree(dev->priv); kfree( dev ); if (auto_wep) del_timer(&(ai)->timer); } static void add_airo_dev( struct net_device *dev ); struct net_device *init_airo_card( unsigned short irq, int port ) { struct net_device *dev; struct airo_info *ai; int i; /* Create the network device object. */ dev = init_etherdev(0, sizeof(*ai)); if (!dev) { printk(KERN_ERR "airo: Couldn't init_etherdev\n"); return NULL; } ai = (struct airo_info *)dev->priv; ai->registered = 1; ai->dev = dev; ai->bap0_lock = SPIN_LOCK_UNLOCKED; ai->bap1_lock = SPIN_LOCK_UNLOCKED; ai->aux_lock = SPIN_LOCK_UNLOCKED; ai->cmd_lock = SPIN_LOCK_UNLOCKED; add_airo_dev( dev ); /* The Airo-specific entries in the device structure. */ dev->hard_start_xmit = &airo_start_xmit; dev->get_stats = &airo_get_stats; dev->set_multicast_list = &airo_set_multicast_list; dev->do_ioctl = &private_ioctl; #ifdef WIRELESS_EXT dev->do_ioctl = &airo_ioctl; dev->get_wireless_stats = airo_get_wireless_stats; #endif /* WIRELESS_EXT */ dev->change_mtu = &airo_change_mtu; dev->open = &airo_open; dev->stop = &airo_close; netif_stop_queue(dev); dev->irq = irq; dev->base_addr = port; if ( request_irq( dev->irq, airo_interrupt, SA_SHIRQ | SA_INTERRUPT, dev->name, dev ) ) { printk(KERN_ERR "airo: register interrupt %d failed\n", irq ); } request_region( dev->base_addr, 64, dev->name ); memset( &((struct airo_info*)dev->priv)->config, 0, sizeof(((struct airo_info*)dev->priv)->config)); if ( setup_card( ai, dev->dev_addr, &((struct airo_info*)dev->priv)->config) != SUCCESS ) { printk( KERN_ERR "airo: MAC could not be enabled\n" ); } else { printk( KERN_INFO "airo: MAC enabled %s %x:%x:%x:%x:%x:%x\n", dev->name, dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2], dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5] ); } /* Allocate the transmit buffers */ for( i = 0; i < MAX_FIDS; i++ ) { ai->fids[i] = transmit_allocate( ai, 2000 ); } setup_proc_entry( dev, (struct airo_info*)dev->priv ); netif_start_queue(dev); return dev; } int reset_airo_card( struct net_device *dev ) { int i; struct airo_info *ai = (struct airo_info*)dev->priv; if ( setup_card(ai, dev->dev_addr, &(ai)->config) != SUCCESS ) { printk( KERN_ERR "airo: MAC could not be enabled\n" ); return -1; } else { printk( KERN_INFO "airo: MAC enabled %s %x:%x:%x:%x:%x:%x\n", dev->name, dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2], dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5] ); /* Allocate the transmit buffers */ for( i = 0; i < MAX_FIDS; i++ ) { ((struct airo_info*)dev->priv)->fids[i] = transmit_allocate( ai, 2000 ); } } enable_interrupts( ai ); netif_start_queue(dev); return 0; } static void airo_interrupt ( int irq, void* dev_id, struct pt_regs *regs) { struct net_device *dev = (struct net_device *)dev_id; u16 len; u16 status; u16 fid; struct airo_info *apriv = (struct airo_info *)dev->priv; u16 savedInterrupts; if (!netif_device_present(dev)) return; status = IN4500( apriv, EVSTAT ); if ( !status ) return; if ( status & EV_AWAKE ) { OUT4500( apriv, EVACK, EV_AWAKE ); OUT4500( apriv, EVACK, EV_AWAKE ); } savedInterrupts = IN4500( apriv, EVINTEN ); OUT4500( apriv, EVINTEN, 0 ); if ( status & EV_LINK ) { /* The link status has changed, if you want to put a monitor hook in, do it here. (Remember that interrupts are still disabled!) */ u16 newStatus = IN4500(apriv, LINKSTAT); /* Here is what newStatus means: */ #define NOBEACON 0x8000 /* Loss of sync - missed beacons */ #define MAXRETRIES 0x8001 /* Loss of sync - max retries */ #define MAXARL 0x8002 /* Loss of sync - average retry level exceeded*/ #define FORCELOSS 0x8003 /* Loss of sync - host request */ #define TSFSYNC 0x8004 /* Loss of sync - TSF synchronization */ #define DEAUTH 0x8100 /* Deauthentication (low byte is reason code) */ #define DISASS 0x8200 /* Disassociation (low byte is reason code) */ #define ASSFAIL 0x8400 /* Association failure (low byte is reason code) */ #define AUTHFAIL 0x0300 /* Authentication failure (low byte is reason code) */ #define ASSOCIATED 0x0400 /* Assocatied */ #define RC_RESERVED 0 /* Reserved return code */ #define RC_NOREASON 1 /* Unspecified reason */ #define RC_AUTHINV 2 /* Previous authentication invalid */ #define RC_DEAUTH 3 /* Deauthenticated because sending station is leaving */ #define RC_NOACT 4 /* Disassociated due to inactivity */ #define RC_MAXLOAD 5 /* Disassociated because AP is unable to handle all currently associated stations */ #define RC_BADCLASS2 6 /* Class 2 frame received from non-Authenticated station */ #define RC_BADCLASS3 7 /* Class 3 frame received from non-Associated station */ #define RC_STATLEAVE 8 /* Disassociated because sending station is leaving BSS */ #define RC_NOAUTH 9 /* Station requesting (Re)Association is not Authenticated with the responding station */ if (newStatus != ASSOCIATED) { if (auto_wep && !timer_pending(&apriv->timer)) { apriv->timer.expires = RUN_AT(HZ*3); add_timer(&apriv->timer); } } } /* Check to see if there is something to recieve */ if ( status & EV_RX ) { struct sk_buff *skb; int flags; fid = IN4500( apriv, RXFID ); /* Get the packet length */ spin_lock_irqsave(&apriv->bap0_lock, flags); bap_setup( apriv, fid, 0x36, BAP0 ); bap_read( apriv, &len, sizeof(len), BAP0 ); len = le16_to_cpu(len); /* The length only counts the payload not the hw addresses */ len += 12; if ( len < 12 || len > 2048 ) { #if LINUX_VERSION_CODE > 0x20127 apriv->stats.rx_length_errors++; #endif apriv->stats.rx_errors++; printk( KERN_ERR "airo: Bad size %d\n", len ); } else { skb = dev_alloc_skb( len + 2 ); if ( !skb ) { apriv->stats.rx_dropped++; } else { char *buffer; buffer = skb_put( skb, len ); bap_setup( apriv, fid, 0x36+sizeof(len), BAP0 ); bap_read( apriv, (u16*)buffer, len, BAP0 ); apriv->stats.rx_packets++; #if LINUX_VERSION_CODE > 0x20127 apriv->stats.rx_bytes += len; #endif skb->dev = dev; skb->ip_summed = CHECKSUM_NONE; skb->protocol = eth_type_trans( skb, dev ); netif_rx( skb ); } } spin_unlock_irqrestore(&apriv->bap0_lock, flags); } /* Check to see if a packet has been transmitted */ if ( status & ( EV_TX|EV_TXEXC ) ) { int i; int len = 0; int full = 1; int index = -1; fid = IN4500(apriv, TXCOMPLFID); for( i = 0; i < MAX_FIDS; i++ ) { if (!(apriv->fids[i] & 0xffff0000)) full = 0; if ( ( apriv->fids[i] & 0xffff ) == fid ) { len = apriv->fids[i] >> 16; index = i; /* Set up to be used again */ apriv->fids[i] &= 0xffff; } } if (full) netif_wake_queue(dev); if (index==-1) { printk( KERN_ERR "airo: Unallocated FID was used to xmit\n" ); } if ( status & EV_TX ) { apriv->stats.tx_packets++; #if LINUX_VERSION_CODE > 0x20127 if(index!=-1) apriv->stats.tx_bytes += len; #endif } else { apriv->stats.tx_errors++; } } if ( status & ~STATUS_INTS ) printk( KERN_WARNING "airo: Got weird status %x\n", status & ~STATUS_INTS ); OUT4500( apriv, EVACK, status & STATUS_INTS ); OUT4500( apriv, EVINTEN, savedInterrupts ); /* done.. */ return; } /* * Routines to talk to the card */ /* * This was originally written for the 4500, hence the name * NOTE: If use with 8bit mode and SMP bad things will happen! * Why would some one do 8 bit IO in an SMP machine?!? */ static void OUT4500( struct airo_info *ai, u16 reg, u16 val ) { val = cpu_to_le16(val); if ( !do8bitIO ) outw( val, ai->dev->base_addr + reg ); else { outb( val & 0xff, ai->dev->base_addr + reg ); outb( val >> 8, ai->dev->base_addr + reg + 1 ); } } static u16 IN4500( struct airo_info *ai, u16 reg ) { unsigned short rc; if ( !do8bitIO ) rc = inw( ai->dev->base_addr + reg ); else { rc = inb( ai->dev->base_addr + reg ); rc += ((int)inb( ai->dev->base_addr + reg + 1 )) << 8; } return le16_to_cpu(rc); } static int enable_MAC( struct airo_info *ai, Resp *rsp ) { Cmd cmd; int status; if (ai->flags&FLAG_RADIO_OFF) return SUCCESS; memset(&cmd, 0, sizeof(cmd)); cmd.cmd = MAC_ENABLE; // disable in case already enabled status = issuecommand(ai, &cmd, rsp); return status; } static void disable_MAC( struct airo_info *ai ) { Cmd cmd; Resp rsp; memset(&cmd, 0, sizeof(cmd)); cmd.cmd = MAC_DISABLE; // disable in case already enabled issuecommand(ai, &cmd, &rsp); } static void enable_interrupts( struct airo_info *ai ) { /* Reset the status register */ u16 status = IN4500( ai, EVSTAT ); OUT4500( ai, EVACK, status ); /* Enable the interrupts */ OUT4500( ai, EVINTEN, STATUS_INTS ); /* Note there is a race condition between the last two lines that I dont know how to get rid of right now... */ } static void disable_interrupts( struct airo_info *ai ) { OUT4500( ai, EVINTEN, 0 ); } static u16 setup_card(struct airo_info *ai, u8 *mac, ConfigRid *config) { Cmd cmd; Resp rsp; ConfigRid cfg; int status; int i; SsidRid mySsid; u16 lastindex; WepKeyRid wkr; int rc; memset( &mySsid, 0, sizeof( mySsid ) ); /* The NOP is the first step in getting the card going */ cmd.cmd = NOP; cmd.parm0 = cmd.parm1 = cmd.parm2 = 0; if ( issuecommand( ai, &cmd, &rsp ) != SUCCESS ) { return ERROR; } memset(&cmd, 0, sizeof(cmd)); cmd.cmd = MAC_DISABLE; // disable in case already enabled if ( issuecommand( ai, &cmd, &rsp ) != SUCCESS ) { return ERROR; } // Let's figure out if we need to use the AUX port cmd.cmd = CMD_ENABLEAUX; if (issuecommand(ai, &cmd, &rsp) != SUCCESS) { printk(KERN_ERR "airo: Error checking for AUX port\n"); return ERROR; } if (!aux_bap || rsp.status & 0xff00) { ai->bap_read = fast_bap_read; printk(KERN_DEBUG "airo: Doing fast bap_reads\n"); } else { ai->bap_read = aux_bap_read; printk(KERN_DEBUG "airo: Doing AUX bap_reads\n"); } if ( config->len ) { cfg = *config; } else { // general configuration (read/modify/write) status = PC4500_readrid(ai, RID_CONFIG, &cfg, sizeof(cfg)); if ( status != SUCCESS ) return ERROR; cfg.opmode = adhoc ? MODE_STA_IBSS : MODE_STA_ESS; /* Save off the MAC */ for( i = 0; i < 6; i++ ) { mac[i] = cfg.macAddr[i]; } /* Check to see if there are any insmod configured rates to add */ if ( rates ) { int i = 0; if ( rates[0] ) memset(cfg.rates,0,sizeof(cfg.rates)); for( i = 0; i < 8 && rates[i]; i++ ) { cfg.rates[i] = rates[i]; } } if ( basic_rate > 0 ) { int i; for( i = 0; i < 8; i++ ) { if ( cfg.rates[i] == basic_rate || !cfg.rates ) { cfg.rates[i] = basic_rate | 0x80; break; } } } cfg.authType = ai->authtype; *config = cfg; } /* Setup the SSIDs if present */ if ( ssids[0] ) { int i = 0; for( i = 0; i < 3 && ssids[i]; i++ ) { mySsid.ssids[i].len = strlen(ssids[i]); if ( mySsid.ssids[i].len > 32 ) mySsid.ssids[i].len = 32; memcpy(mySsid.ssids[i].ssid, ssids[i], mySsid.ssids[i].len); mySsid.ssids[i].len = cpu_to_le16(mySsid.ssids[i].len); } } status = PC4500_writerid( ai, RID_CONFIG, &cfg, sizeof(cfg)); if ( status != SUCCESS ) return ERROR; /* Set up the SSID list */ status = PC4500_writerid(ai, RID_SSID, &mySsid, sizeof(mySsid)); if ( status != SUCCESS ) return ERROR; /* Grab the initial wep key, we gotta save it for auto_wep */ rc = PC4500_readrid(ai, RID_WEP_TEMP, &wkr, sizeof(wkr)); if (rc == SUCCESS) do { lastindex = wkr.kindex; if (wkr.kindex == 0xffff) { ai->defindex = wkr.mac[0]; } PC4500_readrid(ai, RID_WEP_PERM, &wkr, sizeof(wkr)); } while(lastindex != wkr.kindex); status = enable_MAC(ai, &rsp); if (auto_wep && !timer_pending(&ai->timer)) { ai->timer.expires = RUN_AT(HZ*3); add_timer(&ai->timer); } if (status != SUCCESS || (rsp.status & 0xFF00) != 0) { int reason = rsp.rsp0; int badRidNumber = rsp.rsp1; int badRidOffset = rsp.rsp2; printk( KERN_ERR "airo: Bad MAC enable reason = %x, rid = %x, offset = %d\n", reason, badRidNumber, badRidOffset ); return ERROR; } return SUCCESS; } static u16 issuecommand(struct airo_info *ai, Cmd *pCmd, Resp *pRsp) { // Im really paranoid about letting it run forever! int max_tries = 600000; int rc = SUCCESS; int flags; spin_lock_irqsave(&ai->cmd_lock, flags); OUT4500(ai, PARAM0, pCmd->parm0); OUT4500(ai, PARAM1, pCmd->parm1); OUT4500(ai, PARAM2, pCmd->parm2); OUT4500(ai, COMMAND, pCmd->cmd); while ( max_tries-- && (IN4500(ai, EVSTAT) & EV_CMD) == 0) { if ( IN4500(ai, COMMAND) == pCmd->cmd) { // PC4500 didn't notice command, try again OUT4500(ai, COMMAND, pCmd->cmd); } } if ( max_tries == -1 ) { printk( KERN_ERR "airo: Max tries exceeded when issueing command\n" ); rc = ERROR; goto done; } // command completed pRsp->status = IN4500(ai, STATUS); pRsp->rsp0 = IN4500(ai, RESP0); pRsp->rsp1 = IN4500(ai, RESP1); pRsp->rsp2 = IN4500(ai, RESP2); // clear stuck command busy if necessary if (IN4500(ai, COMMAND) & COMMAND_BUSY) { OUT4500(ai, EVACK, EV_CLEARCOMMANDBUSY); } // acknowledge processing the status/response OUT4500(ai, EVACK, EV_CMD); done: spin_unlock_irqrestore(&ai->cmd_lock, flags); return rc; } /* Sets up the bap to start exchange data. whichbap should * be one of the BAP0 or BAP1 defines. Locks should be held before * calling! */ static int bap_setup(struct airo_info *ai, u16 rid, u16 offset, int whichbap ) { int timeout = 50; int max_tries = 3; OUT4500(ai, SELECT0+whichbap, rid); OUT4500(ai, OFFSET0+whichbap, offset); while (1) { int status = IN4500(ai, OFFSET0+whichbap); if (status & BAP_BUSY) { /* This isn't really a timeout, but its kinda close */ if (timeout--) { continue; } } else if ( status & BAP_ERR ) { /* invalid rid or offset */ printk( KERN_ERR "airo: BAP error %x %d\n", status, whichbap ); return ERROR; } else if (status & BAP_DONE) { // success return SUCCESS; } if ( !(max_tries--) ) { printk( KERN_ERR "airo: BAP setup error too many retries\n" ); return ERROR; } // -- PC4500 missed it, try again OUT4500(ai, SELECT0+whichbap, rid); OUT4500(ai, OFFSET0+whichbap, offset); timeout = 50; } } /* should only be called by aux_bap_read. This aux function and the following use concepts not documented in the developers guide. I got them from a patch given to my by Aironet */ static u16 aux_setup(struct airo_info *ai, u16 page, u16 offset, u16 *len) { u16 next; OUT4500(ai, AUXPAGE, page); OUT4500(ai, AUXOFF, 0); next = IN4500(ai, AUXDATA); *len = IN4500(ai, AUXDATA)&0xff; if (offset != 4) OUT4500(ai, AUXOFF, offset); return next; } /* requires call to bap_setup() first */ static int aux_bap_read(struct airo_info *ai, u16 *pu16Dst, int bytelen, int whichbap) { u16 len; u16 page; u16 offset; u16 next; int words; int i; int flags; spin_lock_irqsave(&ai->aux_lock, flags); page = IN4500(ai, SWS0+whichbap); offset = IN4500(ai, SWS2+whichbap); next = aux_setup(ai, page, offset, &len); words = (bytelen+1)>>1; for (i=0; i>1) < (words-i) ? (len>>1) : (words-i); if ( !do8bitIO ) insw( ai->dev->base_addr+DATA0+whichbap, pu16Dst+i,count ); else insb( ai->dev->base_addr+DATA0+whichbap, pu16Dst+i, count << 1 ); i += count; if (iaux_lock, flags); return SUCCESS; } /* requires call to bap_setup() first */ static int fast_bap_read(struct airo_info *ai, u16 *pu16Dst, int bytelen, int whichbap) { bytelen = (bytelen + 1) & (~1); // round up to even value if ( !do8bitIO ) insw( ai->dev->base_addr+DATA0+whichbap, pu16Dst, bytelen>>1 ); else insb( ai->dev->base_addr+DATA0+whichbap, pu16Dst, bytelen ); return SUCCESS; } /* requires call to bap_setup() first */ static int bap_write(struct airo_info *ai, const u16 *pu16Src, int bytelen, int whichbap) { bytelen = (bytelen + 1) & (~1); // round up to even value if ( !do8bitIO ) outsw( ai->dev->base_addr+DATA0+whichbap, pu16Src, bytelen>>1 ); else outsb( ai->dev->base_addr+DATA0+whichbap, pu16Src, bytelen ); return SUCCESS; } static int PC4500_accessrid(struct airo_info *ai, u16 rid, u16 accmd) { Cmd cmd; /* for issuing commands */ Resp rsp; /* response from commands */ u16 status; memset(&cmd, 0, sizeof(cmd)); cmd.cmd = accmd; cmd.parm0 = rid; status = issuecommand(ai, &cmd, &rsp); if (status != 0) return status; if ( (rsp.status & 0x7F00) != 0) { return (accmd << 8) + (rsp.rsp0 & 0xFF); } return 0; } /* Note, that we are using BAP1 which is also used by transmit, so * we must get a lock. */ static int PC4500_readrid(struct airo_info *ai, u16 rid, void *pBuf, int len) { u16 status; int flags; int rc = SUCCESS; spin_lock_irqsave(&ai->bap1_lock, flags); if ( (status = PC4500_accessrid(ai, rid, CMD_ACCESS)) != SUCCESS) { rc = status; goto done; } if (bap_setup(ai, rid, 0, BAP1) != SUCCESS) { rc = status; goto done; } // read the rid length field bap_read(ai, pBuf, 2, BAP1); // length for remaining part of rid len = min(len, le16_to_cpu(*(u16*)pBuf)) - 2; if ( len <= 2 ) { printk( KERN_ERR "airo: Rid %x has a length of %d which is too short\n", (int)rid, (int)len ); rc = ERROR; goto done; } // read remainder of the rid if (bap_setup(ai, rid, 2, BAP1) != SUCCESS) { rc = ERROR; goto done; } rc = bap_read(ai, ((u16*)pBuf)+1, len, BAP1); done: spin_unlock_irqrestore(&ai->bap1_lock, flags); return rc; } /* Note, that we are using BAP1 which is also used by transmit, so * make sure this isnt called when a transmit is happening */ static int PC4500_writerid(struct airo_info *ai, u16 rid, const void *pBuf, int len) { u16 status; int flags; int rc = SUCCESS; spin_lock_irqsave(&ai->bap1_lock, flags); // --- first access so that we can write the rid data if ( (status = PC4500_accessrid(ai, rid, CMD_ACCESS)) != 0) { rc = status; goto done; } // --- now write the rid data if (bap_setup(ai, rid, 0, BAP1) != SUCCESS) { rc = ERROR; goto done; } bap_write(ai, pBuf, len, BAP1); // ---now commit the rid data rc = PC4500_accessrid(ai, rid, 0x100|CMD_ACCESS); done: spin_unlock_irqrestore(&ai->bap1_lock, flags); return rc; } /* Allocates a FID to be used for transmitting packets. We only use one for now. */ static u16 transmit_allocate(struct airo_info *ai, int lenPayload) { Cmd cmd; Resp rsp; u16 txFid; u16 txControl; int flags; cmd.cmd = CMD_ALLOCATETX; cmd.parm0 = lenPayload; if (issuecommand(ai, &cmd, &rsp) != SUCCESS) return 0; if ( (rsp.status & 0xFF00) != 0) return 0; /* wait for the allocate event/indication * It makes me kind of nervous that this can just sit here and spin, * but in practice it only loops like four times. */ while ( (IN4500(ai, EVSTAT) & EV_ALLOC) == 0) ; // get the allocated fid and acknowledge txFid = IN4500(ai, TXALLOCFID); OUT4500(ai, EVACK, EV_ALLOC); /* The CARD is pretty cool since it converts the ethernet packet * into 802.11. Also note that we don't release the FID since we * will be using the same one over and over again. */ /* We only have to setup the control once since we are not * releasing the fid. */ txControl = TXCTL_TXOK | TXCTL_TXEX | TXCTL_802_3 | TXCTL_ETHERNET | TXCTL_NORELEASE; spin_lock_irqsave(&ai->bap1_lock, flags); if (bap_setup(ai, txFid, 0x0008, BAP1) != SUCCESS) return ERROR; bap_write(ai, &txControl, sizeof(txControl), BAP1); spin_unlock_irqrestore(&ai->bap1_lock, flags); return txFid; } /* In general BAP1 is dedicated to transmiting packets. However, since we need a BAP when accessing RIDs, we also use BAP1 for that. Make sure the BAP1 spinlock is held when this is called. */ static int transmit_802_3_packet(struct airo_info *ai, u16 txFid, char *pPacket, int len) { u16 payloadLen; Cmd cmd; Resp rsp; if (len < 12) { printk( KERN_WARNING "Short packet %d\n", len ); return ERROR; } // packet is destination[6], source[6], payload[len-12] // write the payload length and dst/src/payload if (bap_setup(ai, txFid, 0x0036, BAP1) != SUCCESS) return ERROR; /* The hardware addresses aren't counted as part of the payload, so * we have to subtract the 12 bytes for the addresses off */ payloadLen = cpu_to_le16(len - 12); bap_write(ai, &payloadLen, sizeof(payloadLen),BAP1); bap_write(ai, (const u16*)pPacket, len, BAP1); // issue the transmit command memset( &cmd, 0, sizeof( cmd ) ); cmd.cmd = CMD_TRANSMIT; cmd.parm0 = txFid; if (issuecommand(ai, &cmd, &rsp) != SUCCESS) return ERROR; if ( (rsp.status & 0xFF00) != 0) return ERROR; return SUCCESS; } /* * This is the proc_fs routines. It is a bit messier than I would * like! Feel free to clean it up! */ /* * Unfortunately sometime between 2.0 and 2.2 the proc interface changed... * Unfortunately I dont know when it was... * Im guessing it is sometime around 0x20155... Anybody know? */ #if (LINUX_VERSION_CODE > 0x20155) static ssize_t proc_read( struct file *file, char *buffer, size_t len, loff_t *offset); static ssize_t proc_write( struct file *file, const char *buffer, size_t len, loff_t *offset ); static int proc_close( struct inode *inode, struct file *file ); #else static int proc_read( struct inode *inode, struct file *file, char *buffer, int len ); static int proc_write( struct inode *inode, struct file *file, const char *buffer, int len ); static void proc_close( struct inode *inode, struct file *file ); #endif static int proc_stats_open( struct inode *inode, struct file *file ); static int proc_statsdelta_open( struct inode *inode, struct file *file ); static int proc_status_open( struct inode *inode, struct file *file ); static int proc_SSID_open( struct inode *inode, struct file *file ); static int proc_APList_open( struct inode *inode, struct file *file ); static int proc_config_open( struct inode *inode, struct file *file ); static int proc_wepkey_open( struct inode *inode, struct file *file ); static struct file_operations proc_statsdelta_ops = { read: proc_read, open: proc_statsdelta_open, release: proc_close }; static struct file_operations proc_stats_ops = { read: proc_read, open: proc_stats_open, release: proc_close }; static struct file_operations proc_status_ops = { read: proc_read, open: proc_status_open, release: proc_close }; static struct file_operations proc_SSID_ops = { read: proc_read, write: proc_write, open: proc_SSID_open, release: proc_close }; static struct file_operations proc_APList_ops = { read: proc_read, write: proc_write, open: proc_APList_open, release: proc_close }; static struct file_operations proc_config_ops = { read: proc_read, write: proc_write, open: proc_config_open, release: proc_close }; static struct file_operations proc_wepkey_ops = { read: proc_read, write: proc_write, open: proc_wepkey_open, release: proc_close }; #if (LINUX_VERSION_CODE < 0x20355) static struct inode_operations proc_inode_statsdelta_ops = { &proc_statsdelta_ops}; static struct inode_operations proc_inode_stats_ops = { &proc_stats_ops}; static struct inode_operations proc_inode_status_ops = { &proc_status_ops}; static struct inode_operations proc_inode_SSID_ops = { &proc_SSID_ops}; static struct inode_operations proc_inode_APList_ops = { &proc_APList_ops}; static struct inode_operations proc_inode_config_ops = { &proc_config_ops}; static struct inode_operations proc_inode_wepkey_ops = { &proc_wepkey_ops}; #endif #if ((LINUX_VERSION_CODE > 0x20155) && (LINUX_VERSION_CODE < 0x20311)) /* * We need to do reference counting here. When the inode is first used, * this will be called with fill non-zero. When it is released this * will be called with fill set to zero. */ static void airo_fill_inode( struct inode *i, int fill ) { if ( fill ) { MOD_INC_USE_COUNT; } else { MOD_DEC_USE_COUNT; } } #endif #if (LINUX_VERSION_CODE < 0x20311) static struct file_operations airo_file_ops = { NULL, // lseek NULL, // read NULL, // write NULL, // readdir NULL, // select NULL, // ioctl NULL, // mmap NULL, // open NULL, // release }; static struct inode_operations airo_inode_ops = { &airo_file_ops, NULL, // create NULL, // lookup }; static struct proc_dir_entry airo_entry = { 0, 7, "aironet", S_IFDIR | S_IRUGO | S_IXUGO, 1, 0, 0, 44, &airo_inode_ops, 0, // get_info #if ((LINUX_VERSION_CODE > 0x20155) && (LINUX_VERSION_CODE < 0x20311)) airo_fill_inode #endif }; #else static struct proc_dir_entry *airo_entry = 0; #endif #if (LINUX_VERSION_CODE < 0x20311) static struct proc_dir_entry wepkey_entry = { 0, 6, "WepKey", S_IFREG | S_IWUSR, 2, 0, 0, 13, &proc_inode_wepkey_ops, NULL }; static struct proc_dir_entry statsdelta_entry = { 0, 10, "StatsDelta", S_IFREG | S_IRUGO | S_IWUSR , 2, 0, 0, 13, &proc_inode_statsdelta_ops, NULL }; static struct proc_dir_entry stats_entry = { 0, 5, "Stats", S_IFREG | S_IRUGO , 2, 0, 0, 13, &proc_inode_stats_ops, NULL }; static struct proc_dir_entry status_entry = { 0, 6, "Status", S_IFREG | S_IRUGO , 2, 0, 0, 13, &proc_inode_status_ops, NULL }; static struct proc_dir_entry SSID_entry = { 0, 4, "SSID", S_IFREG | S_IRUGO | S_IWUSR, 2, 0, 0, 13, &proc_inode_SSID_ops, NULL }; static struct proc_dir_entry APList_entry = { 0, 6, "APList", S_IFREG | S_IRUGO | S_IWUSR, 2, 0, 0, 13, &proc_inode_APList_ops, NULL }; static struct proc_dir_entry config_entry = { 0, 6, "Config", S_IFREG | S_IRUGO | S_IWUSR, 2, 0, 0, 13, &proc_inode_config_ops, NULL }; #endif struct proc_data { int release_buffer; int readlen; char *rbuffer; int writelen; int maxwritelen; char *wbuffer; void (*on_close) (struct inode *, struct file *); }; #if (LINUX_VERSION_CODE < 0x20311) static int setup_proc_entry( struct net_device *dev, struct airo_info *apriv ) { /* First setup the device directory */ memset( &apriv->proc_entry, 0, sizeof( apriv->proc_entry ) ); apriv->proc_entry.namelen = strlen( dev->name ); apriv->proc_entry.name = dev->name; apriv->proc_entry.mode = S_IFDIR | S_IRUGO | S_IXUGO; apriv->proc_entry.nlink = 2; apriv->proc_entry.ops = airo_entry.ops; PROC_REGISTER( &airo_entry, &apriv->proc_entry ); /* Setup the StatsDelta */ memcpy( &apriv->proc_statsdelta_entry, &statsdelta_entry, sizeof( statsdelta_entry ) ); apriv->proc_statsdelta_entry.data = dev; PROC_REGISTER( &apriv->proc_entry, &apriv->proc_statsdelta_entry ); /* Setup the Stats */ memcpy( &apriv->proc_stats_entry, &stats_entry, sizeof( stats_entry ) ); apriv->proc_stats_entry.data = dev; PROC_REGISTER( &apriv->proc_entry, &apriv->proc_stats_entry ); /* Setup the Status */ memcpy( &apriv->proc_status_entry, &status_entry, sizeof( status_entry ) ); apriv->proc_status_entry.data = dev; PROC_REGISTER( &apriv->proc_entry, &apriv->proc_status_entry ); /* Setup the Config */ memcpy( &apriv->proc_config_entry, &config_entry, sizeof( config_entry ) ); apriv->proc_config_entry.data = dev; PROC_REGISTER( &apriv->proc_entry, &apriv->proc_config_entry ); /* Setup the SSID */ memcpy( &apriv->proc_SSID_entry, &SSID_entry, sizeof( SSID_entry ) ); apriv->proc_SSID_entry.data = dev; PROC_REGISTER( &apriv->proc_entry, &apriv->proc_SSID_entry ); /* Setup the APList */ memcpy( &apriv->proc_APList_entry, &APList_entry, sizeof( APList_entry ) ); apriv->proc_APList_entry.data = dev; PROC_REGISTER( &apriv->proc_entry, &apriv->proc_APList_entry ); /* Setup the WepKey */ memcpy( &apriv->proc_wepkey_entry, &wepkey_entry, sizeof( wepkey_entry ) ); apriv->proc_wepkey_entry.data = dev; PROC_REGISTER( &apriv->proc_entry, &apriv->proc_wepkey_entry ); return 0; } static int takedown_proc_entry( struct net_device *dev, struct airo_info *apriv ) { if ( !apriv->proc_entry.namelen ) return 0; PROC_UNREGISTER( &apriv->proc_entry, &apriv->proc_statsdelta_entry ); PROC_UNREGISTER( &apriv->proc_entry, &apriv->proc_stats_entry ); PROC_UNREGISTER( &apriv->proc_entry, &apriv->proc_status_entry ); PROC_UNREGISTER( &apriv->proc_entry, &apriv->proc_config_entry ); PROC_UNREGISTER( &apriv->proc_entry, &apriv->proc_SSID_entry ); PROC_UNREGISTER( &apriv->proc_entry, &apriv->proc_APList_entry ); PROC_UNREGISTER( &apriv->proc_entry, &apriv->proc_wepkey_entry ); PROC_UNREGISTER( &airo_entry, &apriv->proc_entry ); return 0; } #else static int setup_proc_entry( struct net_device *dev, struct airo_info *apriv ) { struct proc_dir_entry *entry; /* First setup the device directory */ apriv->proc_entry = create_proc_entry(dev->name, S_IFDIR|S_IRUGO|S_IXUGO, airo_entry); /* Setup the StatsDelta */ entry = create_proc_entry("StatsDelta", S_IFREG | S_IRUGO | S_IWUSR, apriv->proc_entry); entry->data = dev; /* This is what was needed right up to the last few versions of 2.3: entry->ops = &proc_inode_statsdelta_ops; */ entry->proc_fops = &proc_statsdelta_ops; /* Setup the Stats */ entry = create_proc_entry("Stats", S_IFREG | S_IRUGO, apriv->proc_entry); entry->data = dev; entry->proc_fops = &proc_stats_ops; /* Setup the Status */ entry = create_proc_entry("Status", S_IFREG | S_IRUGO, apriv->proc_entry); entry->data = dev; entry->proc_fops = &proc_status_ops; /* Setup the Config */ entry = create_proc_entry("Config", S_IFREG | S_IRUGO | S_IWUGO, apriv->proc_entry); entry->data = dev; entry->proc_fops = &proc_config_ops; /* Setup the SSID */ entry = create_proc_entry("SSID", S_IFREG | S_IRUGO | S_IWUGO, apriv->proc_entry); entry->data = dev; entry->proc_fops = &proc_SSID_ops; /* Setup the APList */ entry = create_proc_entry("APList", S_IFREG | S_IRUGO | S_IWUGO, apriv->proc_entry); entry->data = dev; entry->proc_fops = &proc_APList_ops; /* Setup the WepKey */ entry = create_proc_entry("WepKey", S_IFREG | S_IWUSR, apriv->proc_entry); entry->data = dev; entry->proc_fops = &proc_wepkey_ops; return 0; } static int takedown_proc_entry( struct net_device *dev, struct airo_info *apriv ) { if ( !apriv->proc_entry->namelen ) return 0; remove_proc_entry("Stats",apriv->proc_entry); remove_proc_entry("StatsDelta",apriv->proc_entry); remove_proc_entry("Status",apriv->proc_entry); remove_proc_entry("Config",apriv->proc_entry); remove_proc_entry("SSID",apriv->proc_entry); remove_proc_entry("APList",apriv->proc_entry); remove_proc_entry("WepKey",apriv->proc_entry); remove_proc_entry(dev->name,airo_entry); return 0; } #endif /* * What we want from the proc_fs is to be able to efficiently read * and write the configuration. To do this, we want to read the * configuration when the file is opened and write it when the file is * closed. So basically we allocate a read buffer at open and fill it * with data, and allocate a write buffer and read it at close. */ /* * The read routine is generic, it relies on the preallocated rbuffer * to supply the data. */ #if (LINUX_VERSION_CODE > 0x20155) static ssize_t proc_read( struct file *file, char *buffer, size_t len, loff_t *offset ) #else static int proc_read( struct inode *inode, struct file *file, char *buffer, int len ) #endif { int i; int pos; struct proc_data *priv = (struct proc_data*)file->private_data; if( !priv->rbuffer ) return -EINVAL; #if (LINUX_VERSION_CODE > 0x20155) pos = *offset; #else pos = file->f_pos; #endif for( i = 0; i+pos < priv->readlen && i < len; i++ ) { put_user( priv->rbuffer[i+pos], buffer+i ); } #if (LINUX_VERSION_CODE > 0x20155) *offset += i; #else file->f_pos += i; #endif return i; } /* * The write routine is generic, it fills in a preallocated rbuffer * to supply the data. */ #if (LINUX_VERSION_CODE > 0x20155) static ssize_t proc_write( struct file *file, const char *buffer, size_t len, loff_t *offset ) #else static int proc_write( struct inode *inode, struct file *file, const char *buffer, int len ) #endif { int i; int pos; struct proc_data *priv = (struct proc_data*)file->private_data; if ( !priv->wbuffer ) { return -EINVAL; } #if (LINUX_VERSION_CODE > 0x20155) pos = *offset; #else pos = file->f_pos; #endif for( i = 0; i + pos < priv->maxwritelen && i < len; i++ ) { #if (LINUX_VERSION_CODE > 0x20155) get_user( priv->wbuffer[i+pos], buffer + i ); #else priv->wbuffer[i+pos] = get_user( buffer + i ); #endif } if ( i+pos > priv->writelen ) priv->writelen = i+file->f_pos; #if (LINUX_VERSION_CODE > 0x20155) *offset += i; #else file->f_pos += i; #endif return i; } static int proc_status_open( struct inode *inode, struct file *file ) { struct proc_data *data; struct proc_dir_entry *dp = inode->u.generic_ip; struct net_device *dev = dp->data; struct airo_info *apriv = (struct airo_info *)dev->priv; CapabilityRid cap_rid; StatusRid status_rid; MOD_INC_USE_COUNT; dp = (struct proc_dir_entry *) inode->u.generic_ip; file->private_data = kmalloc(sizeof(struct proc_data ), GFP_KERNEL); memset(file->private_data, 0, sizeof(struct proc_data)); data = (struct proc_data *)file->private_data; data->rbuffer = kmalloc( 2048, GFP_KERNEL ); PC4500_readrid(apriv, 0xFF50, &status_rid, sizeof(status_rid)); PC4500_readrid(apriv, 0xFF00, &cap_rid, sizeof(cap_rid)); sprintf( data->rbuffer, "Mode: %x\n" "Signal Strength: %d\n" "Signal Quality: %d\n" "SSID: %-.*s\n" "AP: %-.16s\n" "Freq: %d\n" "BitRate: %dmbs\n" "Driver Version: %s\n" "Device: %s\nManufacturer: %s\nFirmware Version: %s\n" "Radio type: %x\nCountry: %x\nHardware Version: %x\n" "Software Version: %x\nSoftware Subversion: %x\n" "Boot block version: %x\n", (int)le16_to_cpu(status_rid.mode), (int)le16_to_cpu(status_rid.normalizedSignalStrength), (int)le16_to_cpu(status_rid.signalQuality), (int)status_rid.SSIDlen, status_rid.SSID, status_rid.apName, (int)le16_to_cpu(status_rid.channel), (int)le16_to_cpu(status_rid.currentXmitRate)/2, version, cap_rid.prodName, cap_rid.manName, cap_rid.prodVer, le16_to_cpu(cap_rid.radioType), le16_to_cpu(cap_rid.country), le16_to_cpu(cap_rid.hardVer), (int)le16_to_cpu(cap_rid.softVer), (int)le16_to_cpu(cap_rid.softSubVer), (int)le16_to_cpu(cap_rid.bootBlockVer) ); data->readlen = strlen( data->rbuffer ); return 0; } static int proc_stats_rid_open(struct inode*, struct file*, u16); static int proc_statsdelta_open( struct inode *inode, struct file *file ) { if (file->f_mode&FMODE_WRITE) { return proc_stats_rid_open(inode, file, RID_STATSDELTACLEAR); } return proc_stats_rid_open(inode, file, RID_STATSDELTA); } static int proc_stats_open( struct inode *inode, struct file *file ) { return proc_stats_rid_open(inode, file, RID_STATS); } static int proc_stats_rid_open( struct inode *inode, struct file *file, u16 rid ) { struct proc_data *data; struct proc_dir_entry *dp = inode->u.generic_ip; struct net_device *dev = dp->data; struct airo_info *apriv = (struct airo_info *)dev->priv; char buffer[1024]; int i, j; int *vals = (int*)&buffer[4]; MOD_INC_USE_COUNT; dp = (struct proc_dir_entry *) inode->u.generic_ip; file->private_data = kmalloc(sizeof(struct proc_data ), GFP_KERNEL); memset(file->private_data, 0, sizeof(struct proc_data)); data = (struct proc_data *)file->private_data; data->rbuffer = kmalloc( 4096, GFP_KERNEL ); PC4500_readrid(apriv, rid, buffer, sizeof(buffer)); j = 0; for(i=0; (int)statsLabels[i]!=-1 && i*44096) { printk(KERN_WARNING "airo: Potentially disasterous buffer overflow averted!\n"); break; } j+=sprintf( data->rbuffer+j, "%s: %d\n",statsLabels[i], le32_to_cpu(vals[i])); } if (i*4>=le16_to_cpu(*(u16*)buffer)){ printk(KERN_WARNING "airo: Got a short rid\n"); } data->readlen = j; return 0; } static int get_dec_u16( char *buffer, int *start, int limit ) { u16 value; int valid = 0; for( value = 0; buffer[*start] >= '0' && buffer[*start] <= '9' && *start < limit; (*start)++ ) { valid = 1; value *= 10; value += buffer[*start] - '0'; } if ( !valid ) return -1; return value; } static void checkThrottle(ConfigRid *config) { int i; /* Old hardware had a limit on encryption speed */ if (config->authType != AUTH_OPEN && maxencrypt) { for(i=0; i<8; i++) { if (config->rates[i] > maxencrypt) { config->rates[i] = 0; } } } } static void proc_config_on_close( struct inode *inode, struct file *file ) { struct proc_data *data = file->private_data; struct proc_dir_entry *dp = inode->u.generic_ip; struct net_device *dev = dp->data; struct airo_info *ai = (struct airo_info*)dev->priv; ConfigRid config; Cmd cmd; Resp rsp; char *line; if ( !data->writelen ) return; dp = (struct proc_dir_entry *) inode->u.generic_ip; memset(&cmd, 0, sizeof(Cmd)); cmd.cmd = MAC_DISABLE; // disable in case already enabled issuecommand(ai, &cmd, &rsp); PC4500_readrid(ai, RID_ACTUALCONFIG, &config, sizeof(config)); line = data->wbuffer; while( line[0] ) { /*** Mode processing */ if ( !strncmp( line, "Mode: ", 6 ) ) { line += 6; if ( line[0] == 'a' ) config.opmode = 0; else config.opmode = cpu_to_le16(1); } /*** Radio status */ else if (!strncmp(line,"Radio: ", 7)) { line += 7; if (!strncmp(line,"off",3)) { ai->flags |= FLAG_RADIO_OFF; } else { ai->flags &= ~FLAG_RADIO_OFF; } } /*** NodeName processing */ else if ( !strncmp( line, "NodeName: ", 10 ) ) { int j; line += 10; memset( config.nodeName, 0, 16 ); /* Do the name, assume a space between the mode and node name */ for( j = 0; j < 16 && line[j] != '\n'; j++ ) { config.nodeName[j] = line[j]; } } /*** PowerMode processing */ else if ( !strncmp( line, "PowerMode: ", 11 ) ) { line += 11; if ( !strncmp( line, "PSPCAM", 6 ) ) { config.powerSaveMode = cpu_to_le16(POWERSAVE_PSPCAM); } else if ( !strncmp( line, "PSP", 3 ) ) { config.powerSaveMode = cpu_to_le16(POWERSAVE_PSP); } else { config.powerSaveMode = cpu_to_le16(POWERSAVE_CAM); } } else if ( !strncmp( line, "DataRates: ", 11 ) ) { int v, i = 0, k = 0; /* i is index into line, k is index to rates */ line += 11; while((v = get_dec_u16(line, &i, 3))!=-1) { config.rates[k++] = (u8)v; line += i + 1; i = 0; } } else if ( !strncmp( line, "Channel: ", 9 ) ) { int v, i = 0; line += 9; v = get_dec_u16(line, &i, i+3); if ( v != -1 ) config.channelSet = (u16)cpu_to_le16(v); } else if ( !strncmp( line, "XmitPower: ", 11 ) ) { int v, i = 0; line += 11; v = get_dec_u16(line, &i, i+3); if ( v != -1 ) config.txPower = (u16)cpu_to_le16(v); } else if ( !strncmp( line, "WEP: ", 5 ) ) { line += 5; switch( line[0] ) { case 's': config.authType = cpu_to_le16(AUTH_SHAREDKEY); break; case 'e': config.authType = cpu_to_le16(AUTH_ENCRYPT); break; default: config.authType = cpu_to_le16(AUTH_OPEN); break; } } else if ( !strncmp( line, "LongRetryLimit: ", 16 ) ) { int v, i = 0; line += 16; v = get_dec_u16(line, &i, 3); v = (v<0) ? 0 : ((v>255) ? 255 : v); config.longRetryLimit = (u16)cpu_to_le16(v); } else if ( !strncmp( line, "ShortRetryLimit: ", 17 ) ) { int v, i = 0; line += 17; v = get_dec_u16(line, &i, 3); v = (v<0) ? 0 : ((v>255) ? 255 : v); config.shortRetryLimit = (u16)cpu_to_le16(v); } else if ( !strncmp( line, "RTSThreshold: ", 14 ) ) { int v, i = 0; line += 14; v = get_dec_u16(line, &i, 4); v = (v<0) ? 0 : ((v>2312) ? 2312 : v); config.rtsThres = (u16)cpu_to_le16(v); } else if ( !strncmp( line, "TXMSDULifetime: ", 16 ) ) { int v, i = 0; line += 16; v = get_dec_u16(line, &i, 5); v = (v<0) ? 0 : v; config.txLifetime = (u16)cpu_to_le16(v); } else if ( !strncmp( line, "RXMSDULifetime: ", 16 ) ) { int v, i = 0; line += 16; v = get_dec_u16(line, &i, 5); v = (v<0) ? 0 : v; config.rxLifetime = (u16)cpu_to_le16(v); } else if ( !strncmp( line, "TXDiversity: ", 13 ) ) { config.txDiversity = (line[13]=='l') ? cpu_to_le16(1) : ((line[13]=='r')? cpu_to_le16(2): cpu_to_le16(3)); } else if ( !strncmp( line, "RXDiversity: ", 13 ) ) { config.rxDiversity = (line[13]=='l') ? cpu_to_le16(1) : ((line[13]=='r')? cpu_to_le16(2): cpu_to_le16(3)); } else if ( !strncmp( line, "FragThreshold: ", 15 ) ) { int v, i = 0; line += 15; v = get_dec_u16(line, &i, 4); v = (v<256) ? 256 : ((v>2312) ? 2312 : v); v = v & 0xfffe; /* Make sure its even */ config.fragThresh = (u16)cpu_to_le16(v); } else if (!strncmp(line, "Modulation: ", 12)) { line += 12; switch(*line) { case 'd': config.modulation=MOD_DEFAULT; break; case 'c': config.modulation=MOD_CCK; break; case 'm': config.modulation=MOD_MOK; break; default: printk( KERN_WARNING "airo: Unknown modulation\n" ); } } else { printk( KERN_WARNING "Couldn't figure out %s\n", line ); } while( line[0] && line[0] != '\n' ) line++; if ( line[0] ) line++; } ai->config = config; checkThrottle(&config); PC4500_writerid(ai, RID_CONFIG, &config, sizeof(config)); enable_MAC(ai, &rsp); } static int proc_config_open( struct inode *inode, struct file *file ) { struct proc_data *data; struct proc_dir_entry *dp = inode->u.generic_ip; struct net_device *dev = dp->data; struct airo_info *ai = (struct airo_info*)dev->priv; ConfigRid config; int i; MOD_INC_USE_COUNT; dp = (struct proc_dir_entry *) inode->u.generic_ip; file->private_data = kmalloc(sizeof(struct proc_data ), GFP_KERNEL); memset(file->private_data, 0, sizeof(struct proc_data)); data = (struct proc_data *)file->private_data; data->rbuffer = kmalloc( 2048, GFP_KERNEL ); data->wbuffer = kmalloc( 2048, GFP_KERNEL ); memset( data->wbuffer, 0, 2048 ); data->maxwritelen = 2048; data->on_close = proc_config_on_close; PC4500_readrid(ai, RID_ACTUALCONFIG, &config, sizeof(config)); i = sprintf( data->rbuffer, "Mode: %s\n" "Radio: %s\n" "NodeName: %-16s\n" "PowerMode: %s\n" "DataRates: %d %d %d %d %d %d %d %d\n" "Channel: %d\n" "XmitPower: %d\n", config.opmode == 0 ? "adhoc" : config.opmode == 1 ? "ESS" : "Error", ai->flags&FLAG_RADIO_OFF ? "off" : "on", config.nodeName, config.powerSaveMode == 0 ? "CAM" : config.powerSaveMode == 1 ? "PSP" : config.powerSaveMode == 2 ? "PSPCAM" : "Error", (int)config.rates[0], (int)config.rates[1], (int)config.rates[2], (int)config.rates[3], (int)config.rates[4], (int)config.rates[5], (int)config.rates[6], (int)config.rates[7], (int)le16_to_cpu(config.channelSet), (int)le16_to_cpu(config.txPower) ); sprintf( data->rbuffer + i, "LongRetryLimit: %d\n" "ShortRetryLimit: %d\n" "RTSThreshold: %d\n" "TXMSDULifetime: %d\n" "RXMSDULifetime: %d\n" "TXDiversity: %s\n" "RXDiversity: %s\n" "FragThreshold: %d\n" "WEP: %s\n" "Modulation: %s\n", (int)le16_to_cpu(config.longRetryLimit), (int)le16_to_cpu(config.shortRetryLimit), (int)le16_to_cpu(config.rtsThres), (int)le16_to_cpu(config.txLifetime), (int)le16_to_cpu(config.rxLifetime), config.txDiversity == 1 ? "left" : config.txDiversity == 2 ? "right" : "both", config.rxDiversity == 1 ? "left" : config.rxDiversity == 2 ? "right" : "both", (int)le16_to_cpu(config.fragThresh), config.authType == AUTH_ENCRYPT ? "encrypt" : config.authType == AUTH_SHAREDKEY ? "shared" : "open", config.modulation == 0 ? "default" : config.modulation == MOD_CCK ? "cck" : config.modulation == MOD_MOK ? "mok" : "error" ); data->readlen = strlen( data->rbuffer ); return 0; } static void proc_SSID_on_close( struct inode *inode, struct file *file ) { struct proc_data *data = (struct proc_data *)file->private_data; struct proc_dir_entry *dp = inode->u.generic_ip; struct net_device *dev = dp->data; struct airo_info *ai = (struct airo_info*)dev->priv; SsidRid SSID_rid; int i; int offset = 0; if ( !data->writelen ) return; memset( &SSID_rid, 0, sizeof( SSID_rid ) ); for( i = 0; i < 3; i++ ) { int j; for( j = 0; j+offset < data->writelen && j < 32 && data->wbuffer[offset+j] != '\n'; j++ ) { SSID_rid.ssids[i].ssid[j] = data->wbuffer[offset+j]; } if ( j == 0 ) break; SSID_rid.ssids[i].len = cpu_to_le16(j); offset += j; while( data->wbuffer[offset] != '\n' && offset < data->writelen ) offset++; offset++; } do_writerid(ai, RID_SSID, &SSID_rid, sizeof( SSID_rid )); } inline static u8 hexVal(char c) { if (c>='0' && c<='9') return c -= '0'; if (c>='a' && c<='f') return c -= 'a'-10; if (c>='A' && c<='F') return c -= 'A'-10; return 0; } static void proc_APList_on_close( struct inode *inode, struct file *file ) { struct proc_data *data = (struct proc_data *)file->private_data; struct proc_dir_entry *dp = inode->u.generic_ip; struct net_device *dev = dp->data; struct airo_info *ai = (struct airo_info*)dev->priv; APListRid APList_rid; int i; if ( !data->writelen ) return; memset( &APList_rid, 0, sizeof(APList_rid) ); APList_rid.len = sizeof(APList_rid); for( i = 0; i < 4 && data->writelen >= (i+1)*6*3; i++ ) { int j; for( j = 0; j < 6*3 && data->wbuffer[j+i*6*3]; j++ ) { switch(j%3) { case 0: APList_rid.ap[i][j/3]= hexVal(data->wbuffer[j+i*6*3])<<4; break; case 1: APList_rid.ap[i][j/3]|= hexVal(data->wbuffer[j+i*6*3]); break; } } } do_writerid(ai, RID_APLIST, &APList_rid, sizeof( APList_rid )); } /* This function wraps PC4500_writerid with a MAC disable */ static int do_writerid( struct airo_info *ai, u16 rid, const void *rid_data, int len ) { int rc; Cmd cmd; Resp rsp; memset(&cmd, 0, sizeof(cmd)); cmd.cmd = MAC_DISABLE; // disable in case already enabled issuecommand(ai, &cmd, &rsp); rc = PC4500_writerid(ai, rid, rid_data, len); enable_MAC(ai, &rsp); return rc; } /* Returns the length of the key at the index. If index == 0xffff * the index of the transmit key is returned. If the key doesn't exist, * -1 will be returned. */ static int get_wep_key(struct airo_info *ai, u16 index) { WepKeyRid wkr; int rc; u16 lastindex; rc = PC4500_readrid(ai, RID_WEP_TEMP, &wkr, sizeof(wkr)); if (rc == SUCCESS) do { lastindex = wkr.kindex; if (wkr.kindex == index) { if (index == 0xffff) { return wkr.mac[0]; } return wkr.klen; } PC4500_readrid(ai, RID_WEP_PERM, &wkr, sizeof(wkr)); } while(lastindex != wkr.kindex); return -1; } static int set_wep_key(struct airo_info *ai, u16 index, const char *key, u16 keylen, int perm ) { static const unsigned char macaddr[6] = { 0x01, 0, 0, 0, 0, 0 }; WepKeyRid wkr; int rc; memset(&wkr, 0, sizeof(wkr)); if (keylen == 0) { // We are selecting which key to use wkr.len = cpu_to_le16(sizeof(wkr)); wkr.kindex = cpu_to_le16(0xffff); wkr.mac[0] = (char)index; if (perm) printk(KERN_INFO "Setting transmit key to %d\n", index); if (perm) ai->defindex = (char)index; } else { // We are actually setting the key wkr.len = cpu_to_le16(sizeof(wkr)); wkr.kindex = cpu_to_le16(index); wkr.klen = cpu_to_le16(keylen); memcpy( wkr.key, key, keylen ); memcpy( wkr.mac, macaddr, 6 ); printk(KERN_INFO "Setting key %d\n", index); } rc = do_writerid(ai, RID_WEP_TEMP, &wkr, sizeof(wkr)); if (rc!=SUCCESS) printk(KERN_ERR "airo: WEP_TEMP set %x\n", rc); if (perm) { rc = do_writerid(ai, RID_WEP_PERM, &wkr, sizeof(wkr)); if (rc!=SUCCESS) { printk(KERN_ERR "airo: WEP_PERM set %x\n", rc); } } return 0; } static void proc_wepkey_on_close( struct inode *inode, struct file *file ) { struct proc_data *data; struct proc_dir_entry *dp = inode->u.generic_ip; struct net_device *dev = dp->data; struct airo_info *ai = (struct airo_info*)dev->priv; int i; char key[16]; u16 index = 0; int j = 0; memset(key, 0, sizeof(key)); dp = (struct proc_dir_entry *) inode->u.generic_ip; data = (struct proc_data *)file->private_data; if ( !data->writelen ) return; if (data->wbuffer[0] >= '0' && data->wbuffer[0] <= '3' && (data->wbuffer[1] == ' ' || data->wbuffer[1] == '\n')) { index = data->wbuffer[0] - '0'; if (data->wbuffer[1] == '\n') { set_wep_key(ai, index, 0, 0, 1); return; } j = 2; } else { printk(KERN_ERR "airo: WepKey passed invalid key index\n"); return; } for( i = 0; i < 16*3 && data->wbuffer[i+j]; i++ ) { switch(i%3) { case 0: key[i/3] = hexVal(data->wbuffer[i+j])<<4; break; case 1: key[i/3] |= hexVal(data->wbuffer[i+j]); break; } } set_wep_key(ai, index, key, i/3, 1); } static int proc_wepkey_open( struct inode *inode, struct file *file ) { struct proc_data *data; struct proc_dir_entry *dp = inode->u.generic_ip; struct net_device *dev = dp->data; struct airo_info *ai = (struct airo_info*)dev->priv; char *ptr; WepKeyRid wkr; u16 lastindex; int j=0; int rc; MOD_INC_USE_COUNT; dp = (struct proc_dir_entry *) inode->u.generic_ip; file->private_data = kmalloc(sizeof(struct proc_data ), GFP_KERNEL); memset(file->private_data, 0, sizeof(struct proc_data)); memset(&wkr, 0, sizeof(wkr)); data = (struct proc_data *)file->private_data; data->rbuffer = kmalloc( 180, GFP_KERNEL ); memset(data->rbuffer, 0, 180); data->writelen = 0; data->maxwritelen = 80; data->wbuffer = kmalloc( 80, GFP_KERNEL ); memset( data->wbuffer, 0, 80 ); data->on_close = proc_wepkey_on_close; ptr = data->rbuffer; strcpy(ptr, "No wep keys\n"); rc = PC4500_readrid(ai, RID_WEP_TEMP, &wkr, sizeof(wkr)); if (rc == SUCCESS) do { lastindex = wkr.kindex; if (wkr.kindex == 0xffff) { j += sprintf(ptr+j, "Tx key = %d\n", (int)wkr.mac[0]); } else { j += sprintf(ptr+j, "Key %d set with length = %d\n", (int)wkr.kindex, (int)wkr.klen); } PC4500_readrid(ai, RID_WEP_PERM, &wkr, sizeof(wkr)); } while((lastindex != wkr.kindex) && (j < 180-30)); data->readlen = strlen( data->rbuffer ); return 0; } static int proc_SSID_open( struct inode *inode, struct file *file ) { struct proc_data *data; struct proc_dir_entry *dp = inode->u.generic_ip; struct net_device *dev = dp->data; struct airo_info *ai = (struct airo_info*)dev->priv; int i; char *ptr; SsidRid SSID_rid; MOD_INC_USE_COUNT; dp = (struct proc_dir_entry *) inode->u.generic_ip; file->private_data = kmalloc(sizeof(struct proc_data ), GFP_KERNEL); memset(file->private_data, 0, sizeof(struct proc_data)); data = (struct proc_data *)file->private_data; data->rbuffer = kmalloc( 104, GFP_KERNEL ); data->writelen = 0; data->maxwritelen = 33*3; data->wbuffer = kmalloc( 33*3, GFP_KERNEL ); memset( data->wbuffer, 0, 33*3 ); data->on_close = proc_SSID_on_close; PC4500_readrid(ai, RID_SSID, &SSID_rid, sizeof( SSID_rid )); ptr = data->rbuffer; for( i = 0; i < 3; i++ ) { int j; if ( !SSID_rid.ssids[i].len ) break; for( j = 0; j < 32 && j < le16_to_cpu(SSID_rid.ssids[i].len) && SSID_rid.ssids[i].ssid[j]; j++ ) { *ptr++ = SSID_rid.ssids[i].ssid[j]; } *ptr++ = '\n'; } *ptr = '\0'; data->readlen = strlen( data->rbuffer ); return 0; } static int proc_APList_open( struct inode *inode, struct file *file ) { struct proc_data *data; struct proc_dir_entry *dp = inode->u.generic_ip; struct net_device *dev = dp->data; struct airo_info *ai = (struct airo_info*)dev->priv; int i; char *ptr; APListRid APList_rid; MOD_INC_USE_COUNT; dp = (struct proc_dir_entry *) inode->u.generic_ip; file->private_data = kmalloc(sizeof(struct proc_data ), GFP_KERNEL); memset(file->private_data, 0, sizeof(struct proc_data)); data = (struct proc_data *)file->private_data; data->rbuffer = kmalloc( 104, GFP_KERNEL ); data->writelen = 0; data->maxwritelen = 4*6*3; data->wbuffer = kmalloc( data->maxwritelen, GFP_KERNEL ); memset( data->wbuffer, 0, data->maxwritelen ); data->on_close = proc_APList_on_close; PC4500_readrid(ai, RID_APLIST, &APList_rid, sizeof(APList_rid)); ptr = data->rbuffer; for( i = 0; i < 4; i++ ) { // We end when we find a zero MAC if ( !*(int*)APList_rid.ap[i] && !*(int*)&APList_rid.ap[i][2]) break; ptr += sprintf(ptr, "%02x:%02x:%02x:%02x:%02x:%02x\n", (int)APList_rid.ap[i][0], (int)APList_rid.ap[i][1], (int)APList_rid.ap[i][2], (int)APList_rid.ap[i][3], (int)APList_rid.ap[i][4], (int)APList_rid.ap[i][5]); } if (i==0) ptr += sprintf(ptr, "Not using specific APs\n"); *ptr = '\0'; data->readlen = strlen( data->rbuffer ); return 0; } #if (LINUX_VERSION_CODE > 0x20155) static int proc_close( struct inode *inode, struct file *file ) #else static void proc_close( struct inode *inode, struct file *file ) #endif { struct proc_data *data = (struct proc_data *)file->private_data; if ( data->on_close != NULL ) data->on_close( inode, file ); MOD_DEC_USE_COUNT; if ( data->rbuffer ) kfree( data->rbuffer ); if ( data->wbuffer ) kfree( data->wbuffer ); kfree( data ); #if (LINUX_VERSION_CODE > 0x20155) return 0; #endif } static struct net_device_list { struct net_device *dev; struct net_device_list *next; } *airo_devices = 0; /* Since the card doesnt automatically switch to the right WEP mode, we will make it do it. If the card isn't associated, every secs we will switch WEP modes to see if that will help. If the card is associated we will check every minute to see if anything has changed. */ static void timer_func( u_long data ) { struct net_device *dev = (struct net_device*)data; struct airo_info *apriv = (struct airo_info *)dev->priv; u16 linkstat = IN4500(apriv, LINKSTAT); if (linkstat != 0x400 ) { /* We don't have a link so try changing the authtype */ ConfigRid config = apriv->config; switch(apriv->authtype) { case AUTH_ENCRYPT: /* So drop to OPEN */ config.authType = AUTH_OPEN; apriv->authtype = AUTH_OPEN; break; case AUTH_SHAREDKEY: if (apriv->keyindex < auto_wep) { set_wep_key(apriv, apriv->keyindex, 0, 0, 0); config.authType = AUTH_SHAREDKEY; apriv->authtype = AUTH_SHAREDKEY; apriv->keyindex++; } else { /* Drop to ENCRYPT */ apriv->keyindex = 0; set_wep_key(apriv, apriv->defindex, 0, 0, 0); config.authType = AUTH_ENCRYPT; apriv->authtype = AUTH_ENCRYPT; } break; default: /* We'll escalate to SHAREDKEY */ config.authType = AUTH_SHAREDKEY; apriv->authtype = AUTH_SHAREDKEY; } checkThrottle(&config); do_writerid(apriv, RID_CONFIG, &config, sizeof(config)); if (!timer_pending(&apriv->timer)) { /* Schedule check to see if the change worked */ apriv->timer.expires = RUN_AT(HZ*3); add_timer(&apriv->timer); } } } static void add_airo_dev( struct net_device *dev ) { struct net_device_list *node = (struct net_device_list*)kmalloc( sizeof( *node ), GFP_KERNEL ); if ( !node ) { printk( KERN_ERR "airo_pci: Out of memory\n" ); } else { if ( auto_wep ) { struct airo_info *apriv=(struct airo_info *)dev->priv; struct timer_list *timer = &((struct airo_info*)dev->priv)->timer; timer->function = timer_func; timer->data = (u_long)dev; init_timer(timer); apriv->authtype = AUTH_SHAREDKEY; } node->dev = dev; node->next = airo_devices; airo_devices = node; } } static void del_airo_dev( struct net_device *dev ) { struct net_device_list **p = &airo_devices; while( *p && ( (*p)->dev != dev ) ) p = &(*p)->next; if ( *p && (*p)->dev == dev ) *p = (*p)->next; } int init_module( void ) { int i; #if (LINUX_VERSION_CODE > 0x20155) #if (LINUX_VERSION_CODE < 0x20311) airo_entry.ops->lookup = proc_net->ops->lookup; airo_entry.ops->default_file_ops->readdir = proc_net->ops->default_file_ops->readdir; #endif #else airo_entry.ops = proc_net.ops; #endif #if (LINUX_VERSION_CODE > 0x20311) airo_entry = create_proc_entry("aironet", S_IFDIR | S_IRUGO, proc_root_driver); #else PROC_REGISTER( &proc_root, &airo_entry ); #endif for( i = 0; i < 4 && io[i] && irq[i]; i++ ) { printk( KERN_INFO "airo: Trying to configure ISA adapter at irq=%d io=0x%x\n", irq[i], io[i] ); init_airo_card( irq[i], io[i] ); } #ifdef CONFIG_PCI if ( pcibios_present() ) { int i; printk( KERN_INFO "airo: Probing for PCI adapters\n" ); for( i = 0; card_ids[i].vendor; i++ ) { #if (LINUX_VERSION_CODE > 0x20155) struct pci_dev *dev = 0; while((dev = pci_find_device(card_ids[i].vendor, card_ids[i].id, dev))) { init_airo_card( dev->irq, #if (LINUX_VERSION_CODE < 0x2030d) dev->base_address[2] & PCI_BASE_ADDRESS_IO_MASK #else dev->resource[2].start #endif ); } #else int j; unsigned char bus, fun; /* We are running fast and loose here, it would be nice to fix it... */ for( j = 0; j < 4; j++ ) { unsigned char irq; unsigned int io; if ( pcibios_find_device( card_ids[i].vendor, card_ids[i].id, j, &bus, &fun ) != PCIBIOS_SUCCESSFUL ) break; pcibios_read_config_byte( bus, fun, PCI_INTERRUPT_LINE, &irq ); pcibios_read_config_dword( bus, fun, PCI_BASE_ADDRESS_2, &io ); io &= PCI_BASE_ADDRESS_IO_MASK; init_airo_card( irq, io ); } #endif } printk( KERN_INFO "airo: Finished probing for PCI adapters\n" ); } #endif return 0; } void cleanup_module( void ) { while( airo_devices ) { printk( KERN_INFO "airo: Unregistering %s\n", airo_devices->dev->name ); stop_airo_card( airo_devices->dev ); } #if (LINUX_VERSION_CODE < 0x20311) PROC_UNREGISTER( &proc_root, &airo_entry ); #else remove_proc_entry("aironet", proc_root_driver); #endif } #ifdef WIRELESS_EXT /* * Initial Wireless Extension code for Aironet driver by : * Jean Tourrilhes - HPL - 17 November 00 */ #ifndef IW_ENCODE_NOKEY #define IW_ENCODE_NOKEY 0x1000 /* Key is write only, so not here */ #endif IW_ENCODE_NOKEY #define IW_ENCODE_MODE (IW_ENCODE_DISABLED | IW_ENCODE_RESTRICTED | IW_ENCODE_OPEN) /* * This defines the configuration part of the Wireless Extensions * Note : irq and spinlock protection will occur in the subroutines * * TODO : * o Check input value more carefully and fill correct values in range * o Implement : POWER, SPY, APLIST * o Optimise when adapter is closed (aggregate changes, commit later) * o Test and shakeout the bugs (if any) * * Jean II */ static int airo_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { struct airo_info *local = (struct airo_info*) dev->priv; struct iwreq *wrq = (struct iwreq *) rq; ConfigRid config; /* Configuration info */ CapabilityRid cap_rid; /* Card capability info */ StatusRid status_rid; /* Card status info */ int rc = 0; /* If the command read some stuff, we better get it out of the card * first... */ if(IW_IS_GET(cmd) || (cmd == SIOCSIWRATE)) { PC4500_readrid(local, 0xFF50, &status_rid, sizeof(status_rid)); PC4500_readrid(local, 0xFF00, &cap_rid, sizeof(cap_rid)); } /* Get config in all cases, because SET will just modify it */ PC4500_readrid(local, RID_ACTUALCONFIG, &config, sizeof(config)); switch (cmd) { // Get name case SIOCGIWNAME: strcpy(wrq->u.name, "IEEE 802.11-DS"); break; // Set frequency/channel case SIOCSIWFREQ: /* If setting by frequency, convert to a channel */ if((wrq->u.freq.e == 1) && (wrq->u.freq.m >= (int) 2.412e8) && (wrq->u.freq.m <= (int) 2.487e8)) { int f = wrq->u.freq.m / 100000; int c = 0; while((c < 14) && (f != frequency_list[c])) c++; /* Hack to fall through... */ wrq->u.freq.e = 0; wrq->u.freq.m = c + 1; } /* Setting by channel number */ if((wrq->u.freq.m > 1000) || (wrq->u.freq.e > 0)) rc = -EOPNOTSUPP; else { int channel = wrq->u.freq.m; /* We should do a better check than that, * based on the card capability !!! */ if((channel < 1) || (channel > 16)) { printk(KERN_DEBUG "%s: New channel value of %d is invalid!\n", dev->name, wrq->u.freq.m); rc = -EINVAL; } else { /* Yes ! We can set it !!! */ config.channelSet = (u16)cpu_to_le16(channel - 1); local->need_commit = 1; } } break; // Get frequency/channel case SIOCGIWFREQ: #ifdef WEXT_USECHANNELS wrq->u.freq.m = ((int) le16_to_cpu(status_rid.channel) + 1); wrq->u.freq.e = 0; #else { int f = (int) le16_to_cpu(status_rid.channel); wrq->u.freq.m = frequency_list[f] * 100000; wrq->u.freq.e = 1; } #endif break; // Set desired network name (ESSID) case SIOCSIWESSID: if (wrq->u.data.pointer) { char essid[IW_ESSID_MAX_SIZE + 1]; SsidRid SSID_rid; /* SSIDs */ /* Reload the list of current SSID */ PC4500_readrid(local, RID_SSID, &SSID_rid, sizeof(SSID_rid)); /* Check if we asked for `any' */ if(wrq->u.data.flags == 0) { /* Just send an empty SSID list */ memset(&SSID_rid, 0, sizeof(SSID_rid)); } else { int index = (wrq->u.data.flags & IW_ENCODE_INDEX) - 1; /* Check the size of the string */ if(wrq->u.data.length > IW_ESSID_MAX_SIZE+1) { rc = -E2BIG; break; } /* Check if index is valid */ if((index < 0) || (index >= 4)) { rc = -EINVAL; break; } /* Set the SSID */ memset(essid, 0, sizeof(essid)); copy_from_user(essid, wrq->u.data.pointer, wrq->u.data.length); memcpy(SSID_rid.ssids[index].ssid, essid, sizeof(essid) - 1); SSID_rid.ssids[index].len = cpu_to_le16(wrq->u.data.length - 1); } /* Write it to the card */ do_writerid(local, RID_SSID, &SSID_rid, sizeof(SSID_rid)); } break; // Get current network name (ESSID) case SIOCGIWESSID: if (wrq->u.data.pointer) { char essid[IW_ESSID_MAX_SIZE + 1]; /* Note : if wrq->u.data.flags != 0, we should * get the relevant SSID from the SSID list... */ /* Get the current SSID */ memcpy(essid, status_rid.SSID, status_rid.SSIDlen); essid[status_rid.SSIDlen] = '\0'; /* If none, we may want to get the one that was set */ /* Push it out ! */ wrq->u.data.length = strlen(essid) + 1; wrq->u.data.flags = 1; /* active */ copy_to_user(wrq->u.data.pointer, essid, sizeof(essid)); } break; // Get current Access Point (BSSID) case SIOCGIWAP: /* Tentative. This seems to work, wow, I'm lucky !!! */ memcpy(wrq->u.ap_addr.sa_data, status_rid.bssid[0], 6); wrq->u.ap_addr.sa_family = ARPHRD_ETHER; break; // Set desired station name case SIOCSIWNICKN: if (wrq->u.data.pointer) { char name[16 + 1]; /* Check the size of the string */ if(wrq->u.data.length > 16 + 1) { rc = -E2BIG; break; } memset(name, 0, sizeof(name)); copy_from_user(name, wrq->u.data.pointer, wrq->u.data.length); memcpy(config.nodeName, name, 16); local->need_commit = 1; } break; // Get current station name case SIOCGIWNICKN: if (wrq->u.data.pointer) { char name[IW_ESSID_MAX_SIZE + 1]; strncpy(name, config.nodeName, 16); name[16] = '\0'; wrq->u.data.length = strlen(name) + 1; copy_to_user(wrq->u.data.pointer, name, sizeof(name)); } break; // Set the desired bit-rate case SIOCSIWRATE: { /* First : get a valid bit rate value */ u8 brate = 0; int i; /* Which type of value ? */ if((wrq->u.bitrate.value < 8) && (wrq->u.bitrate.value >= 0)) { /* Setting by rate index */ /* Find value in the magic rate table */ brate = cap_rid.supportedRates[wrq->u.bitrate.value]; } else { /* Setting by frequency value */ u8 normvalue = (u8) (wrq->u.bitrate.value/500000); /* Check if rate is valid */ for(i = 0 ; i < 8 ; i++) { if(normvalue == cap_rid.supportedRates[i]) { brate = normvalue; break; } } } /* -1 designed the max rate (mostly auto mode) */ if(wrq->u.bitrate.value == -1) { /* Get the highest available rate */ for(i = 0 ; i < 8 ; i++) { if(cap_rid.supportedRates[i] == 0) break; } if(i != 0) brate = cap_rid.supportedRates[i - 1]; } /* Check that it is valid */ if(brate == 0) { rc = -EINVAL; break; } /* Now, check if we want a fixed or auto value */ if(wrq->u.bitrate.fixed == 0) { /* Fill all the rates up to this max rate */ memset(config.rates, 0, 8); for(i = 0 ; i < 8 ; i++) { config.rates[i] = cap_rid.supportedRates[i]; if(config.rates[i] == brate) break; } local->need_commit = 1; } else { /* Fixed mode */ /* One rate, fixed */ memset(config.rates, 0, 8); config.rates[0] = brate; local->need_commit = 1; } break; } // Get the current bit-rate case SIOCGIWRATE: { int brate = le16_to_cpu(status_rid.currentXmitRate); wrq->u.bitrate.value = brate * 500000; /* If more than one rate, set auto */ wrq->u.rts.fixed = (config.rates[1] == 0); } break; // Set the desired RTS threshold case SIOCSIWRTS: { int rthr = wrq->u.rts.value; if(wrq->u.rts.disabled) rthr = 2312; if((rthr < 0) || (rthr > 2312)) { rc = -EINVAL; } else { config.rtsThres = (u16)cpu_to_le16(rthr); local->need_commit = 1; } } break; // Get the current RTS threshold case SIOCGIWRTS: wrq->u.rts.value = le16_to_cpu(config.rtsThres); wrq->u.rts.disabled = (wrq->u.rts.value >= 2312); wrq->u.rts.fixed = 1; break; // Set the desired fragmentation threshold case SIOCSIWFRAG: { int fthr = wrq->u.frag.value; if(wrq->u.frag.disabled) fthr = 2312; if((fthr < 256) || (fthr > 2312)) { rc = -EINVAL; } else { fthr &= ~0x1; /* Get an even value */ config.fragThresh = (u16)cpu_to_le16(fthr); local->need_commit = 1; } } break; // Get the current fragmentation threshold case SIOCGIWFRAG: wrq->u.frag.value = le16_to_cpu(config.fragThresh); wrq->u.frag.disabled = (wrq->u.frag.value >= 2312); wrq->u.frag.fixed = 1; break; // Set mode of operation case SIOCSIWMODE: /* Note : we deal only with Ad-Hoc and managed mode. * We could map other modes, but they are undocumented * Jean II */ { char mode = 0; /* Default : ad-hoc */ switch(wrq->u.mode) { case IW_MODE_INFRA: mode = 1; /* Fall through */ case IW_MODE_ADHOC: config.opmode = cpu_to_le16(mode); local->need_commit = 1; break; default: rc = -EINVAL; } } break; // Get mode of operation case SIOCGIWMODE: /* If not managed, assume it's ad-hoc */ if(config.opmode == 1) wrq->u.mode = IW_MODE_INFRA; else wrq->u.mode = IW_MODE_ADHOC; break; // Set WEP keys and mode case SIOCSIWENCODE: /* Is WEP supported ? */ if(!1) { rc = -EOPNOTSUPP; break; } /* Basic checking: do we have a key to set ? */ if (wrq->u.encoding.pointer != (caddr_t) 0) { wep_key_t key; int index = (wrq->u.encoding.flags & IW_ENCODE_INDEX) - 1; int current_index = get_wep_key(local, 0xffff); /* Check the size of the key */ if (wrq->u.encoding.length > MAX_KEY_SIZE) { rc = -EINVAL; break; } /* Check the index (none -> use current) */ if ((index < 0) || (index >= MAX_KEYS)) index = current_index; /* Set the length */ if (wrq->u.encoding.length > MIN_KEY_SIZE) key.len = MAX_KEY_SIZE; else if (wrq->u.encoding.length > 0) key.len = MIN_KEY_SIZE; else /* Disable the key */ key.len = 0; /* Check if the key is not marked as invalid */ if(!(wrq->u.encoding.flags & IW_ENCODE_NOKEY)) { /* Cleanup */ memset(key.key, 0, MAX_KEY_SIZE); /* Copy the key in the driver */ if(copy_from_user(key.key, wrq->u.encoding.pointer, wrq->u.encoding.length)) { key.len = 0; rc = -EFAULT; break; } /* Send the key to the card */ set_wep_key(local, index, key.key, key.len, 1); } /* WE specify that if a valid key is set, encryption * should be enabled (user may turn it off later) * This is also how "iwconfig ethX key on" works */ if((index == current_index) && (key.len > 0) && (config.authType == AUTH_OPEN)) { config.authType = AUTH_ENCRYPT; local->need_commit = 1; } } else { /* Do we want to just set the transmit key index ? */ int index = (wrq->u.encoding.flags & IW_ENCODE_INDEX) - 1; if ((index >= 0) && (index < MAX_KEYS)) { set_wep_key(local, index, 0, 0, 1); } else /* Don't complain if only change the mode */ if(!wrq->u.encoding.flags & IW_ENCODE_MODE) { rc = -EINVAL; break; } } /* Read the flags */ if(wrq->u.encoding.flags & IW_ENCODE_DISABLED) config.authType = AUTH_OPEN; // disable encryption if(wrq->u.encoding.flags & IW_ENCODE_RESTRICTED) config.authType = AUTH_SHAREDKEY; // Only Both if(wrq->u.encoding.flags & IW_ENCODE_OPEN) config.authType = AUTH_ENCRYPT; // Only Wep /* Commit the changes if needed */ if(wrq->u.encoding.flags & IW_ENCODE_MODE) local->need_commit = 1; break; // Get the WEP keys and mode case SIOCGIWENCODE: /* Is it supported ? How do we test encryption support ? */ if(!1) { rc = -EOPNOTSUPP; break; } // Only super-user can see WEP key if (!capable(CAP_NET_ADMIN)) { rc = -EPERM; break; } // Basic checking... if (wrq->u.encoding.pointer != (caddr_t) 0) { char zeros[16]; int index = (wrq->u.encoding.flags & IW_ENCODE_INDEX) - 1; memset(zeros,0, sizeof(zeros)); /* Check encryption mode */ wrq->u.encoding.flags = IW_ENCODE_NOKEY; /* Is WEP enabled ??? */ switch(config.authType) { case AUTH_ENCRYPT: wrq->u.encoding.flags |= IW_ENCODE_OPEN; break; case AUTH_SHAREDKEY: wrq->u.encoding.flags |= IW_ENCODE_RESTRICTED; break; default: case AUTH_OPEN: wrq->u.encoding.flags |= IW_ENCODE_DISABLED; break; } /* Which key do we want ? -1 -> tx index */ if((index < 0) || (index >= MAX_KEYS)) index = get_wep_key(local, 0xffff); wrq->u.encoding.flags |= index + 1; /* Copy the key to the user buffer */ wrq->u.encoding.length = get_wep_key(local, index); if (wrq->u.encoding.length > 16) { wrq->u.encoding.length=0; } if(copy_to_user(wrq->u.encoding.pointer, zeros, wrq->u.encoding.length)) rc = -EFAULT; } break; // Get range of parameters case SIOCGIWRANGE: if (wrq->u.data.pointer) { struct iw_range range; int i; int k; rc = verify_area(VERIFY_WRITE, wrq->u.data.pointer, sizeof(struct iw_range)); if (rc) break; wrq->u.data.length = sizeof(range); /* Should adapt depending on max rate */ range.throughput = 1.6 * 1024 * 1024; range.min_nwid = 0x0000; range.max_nwid = 0x0000; range.num_channels = 14; /* Should be based on cap_rid.country to give only * what the current card support */ k = 0; for(i = 0; i < 14; i++) { range.freq[k].i = i + 1; /* List index */ range.freq[k].m = frequency_list[i] * 100000; range.freq[k++].e = 1; /* Values in table in MHz -> * 10^5 * 10 */ } range.num_frequency = k; /* Hum... Should put the right values there */ range.max_qual.qual = 0xFF; range.max_qual.level = 0xFF; range.max_qual.noise = 0; for(i = 0 ; i < 8 ; i++) { range.bitrate[i] = cap_rid.supportedRates[i] * 500000; if(range.bitrate[i] == 0) break; } range.num_bitrates = i; range.min_rts = 0; range.max_rts = 2312; range.min_frag = 256; range.max_frag = 2312; /* Is WEP it supported? */ /* Currently, I don't know how to tell if WEP is * supported and which version is supported :-( */ if(1) { // WEP: RC4 40 bits range.encoding_size[0] = 5; // RC4 ~128 bits range.encoding_size[1] = 13; range.num_encoding_sizes = 2; range.max_encoding_tokens = 4; // 4 keys } else { range.num_encoding_sizes = 0; range.max_encoding_tokens = 0; } copy_to_user(wrq->u.data.pointer, &range, sizeof(struct iw_range)); } break; /* Missing : * SENS : Doesn't seem to be available * POWER : I'm too lazy to do it * SPY : Useful for Ad-Hoc mode people. I feel a bit lazy... * APLIST : Low priority... */ // All other calls are currently unsupported default: rc = -EOPNOTSUPP; } /* Some of the "SET" function may have modified some of the * parameters. It's now time to commit them in the card */ if(local->need_commit) { /* A classical optimisation here is to not commit any change * if the card is not "opened". This is what we do in * wvlan_cs (see for details). * For that, we would need to have the config RID saved in * the airo_info struct and make sure to not re-read it if * local->need_commit != 0. Then, you need to patch "open" * to do the final commit of all parameters... * Jean II */ Cmd command; Resp rsp; command.cmd = MAC_DISABLE; // disable in case already enabled issuecommand(local, &command, &rsp); local->config = config; /* ???? config is local !!! */ checkThrottle(&config); PC4500_writerid(local, RID_CONFIG, &config, sizeof(config)); enable_MAC(local, &rsp); local->need_commit = 0; } return(rc); } /* * Get the Wireless stats out of the driver * Note : irq and spinlock protection will occur in the subroutines * * TODO : * o Check if work in Ad-Hoc mode (otherwise, use SPY, as in wvlan_cs) * o Find the noise level * o Convert values to dBm * o Fill out discard.misc with something interesting * * Jean */ struct iw_statistics *airo_get_wireless_stats(struct net_device *dev) { struct airo_info *local = (struct airo_info*) dev->priv; StatusRid status_rid; char buffer[1024]; int *vals = (int*)&buffer[4]; /* Get stats out of the card */ PC4500_readrid(local, 0xFF50, &status_rid, sizeof(status_rid)); PC4500_readrid(local, RID_STATS, buffer, sizeof(buffer)); /* The status */ local->wstats.status = le16_to_cpu(status_rid.mode); /* Signal quality and co. But where is the noise level ??? */ local->wstats.qual.qual = le16_to_cpu(status_rid.signalQuality); local->wstats.qual.level = le16_to_cpu(status_rid.normalizedSignalStrength); local->wstats.qual.noise = 0; local->wstats.qual.updated = 3; /* Packets discarded in the wireless adapter due to wireless * specific problems */ local->wstats.discard.nwid = le32_to_cpu(vals[56]);/* SSID Mismatch */ local->wstats.discard.code = le32_to_cpu(vals[6]);/* RxWepErr */ local->wstats.discard.misc = 0; /* Your choice ;-) */ return (&local->wstats); } #endif /* WIRELESS_EXT */